[1] |
PANG Y, SHI Y Y, GAO S C, et al. Improved crop row detection with deep neural network for early-season maize stand count in UAV imagery[J]. Computers and Electronics in Agriculture, 2020, 178: 405766. |
[2] |
明博, 谢瑞芝, 侯鹏, 等. 2005—2016年中国玉米种植密度变化分析[J]. 中国农业科学, 2017, 50(11): 1960-1972. doi: 10.3864/j.issn.0578-1752.2017.11.002MING B, XIE R Zh, HOU P, et al. Changes of maize planting density in China [J]. Scientia Agricultura Sinica, 2017, 50(11): 1960-1972(in Chinese). doi: 10.3864/j.issn.0578-1752.2017.11.002 |
[3] |
CHEN R Z, CHU T X, LANDIVAR J A, et al. Monitoring cotton germination using ultrahigh resolution UAS images[J]. Precision Agriculture, 2018, 19(1): 161-177. doi: 10.1007/s11119-017-9508-7 |
[4] |
GNADINGER F, SCHMIDHALTER U. Digital counts of maize plants by unmanned aerial vehicles(UAVs)[J]. Remote Sensing, 2017, 9(6): 544. doi: 10.3390/rs9060544 |
[5] |
XIA Ch L, WANG L T, CHUNG B K, et al. In situ 3-D segmentation of individual plant leaves using a RGB-D camera for agricultural automation[J]. Sensors, 2015, 15(8): 20463-20479. doi: 10.3390/s150820463 |
[6] |
VARELA S, DHODDA P, HSU W, et al. Early-season stand count determination in corn via integration of imagery from unmanned aerial systems(UAS) and supervised learning techniques[J]. Remote Sensing, 2018, 10(3): 343. doi: 10.3390/rs10020343 |
[7] |
刘建刚, 赵春江, 杨贵军, 等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报, 2016, 32(24): 98-106.LIU J G, ZHAO Ch J, YANG G J, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(24): 98-106 (in Chinese). |
[8] |
张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17.ZHANG H Ch, ZHOU H P, ZHENG J Q, et al. Research progress and prospect in plant phenotyping platform and image analysis technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 1-17 (in Chinese). |
[9] |
李鹏, 劳彩莲, 杨瀚, 等. 基于移动机器人平台的玉米植株三维信息采集系统[J]. 农业机械学报, 2019, 50(s1): 15-21.LI P, LAO C L, YANG H, et al. Maize plant 3-D information acquisition system based on mobile robot platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(s1): 15-21 (in Chinese). |
[10] |
雷蕾, 李振洪, 杨浩, 等. 利用无人机激光雷达提取玉米叶面积密度[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1737-1745.LEI L, LI Zh H, YANG H, et al. Xtraction of the leaf area density of maize using UAV-LiDAR data [J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1737-1745(in Chinese). |
[11] |
管贤平, 刘宽, 邱白晶, 等. 基于机载三维激光扫描的大豆冠层几何参数提取[J]. 农业工程学报, 2019, 35(23): 96-103.GUAN X P, LIU K, QIU B J, et al. Extraction of geometric parameters of soybean canopy by airborne 3D laser canning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 96-103(in Chinese). |
[12] |
ZERMAS D, MORELLAS V, MULLA D, et al. 3-D model processing for high throughput phenotype extraction-the case of corn[J]. Computers and Electronics in Agriculture, 2020, 172: 105047. doi: 10.1016/j.compag.2019.105047 |
[13] |
JIN S C, SU Y J, GAO S, et al. Deep learning: Individual maize segmentation from terrestrial lidar data using faster R-CNN and regional growth algorithms[J]. Frontiers in Plant Science, 2018, 9: 866. doi: 10.3389/fpls.2018.00866 |
[14] |
林承达, 谢良毅, 韩晶, 等. 基于激光点云的农田玉米种植株数数目识别[J]. 激光技术, 2022, 46(2): 220-225.LIN Ch D, XIE L Y, HAN J, et al. Recognition of the number of corn plants in farmland based on laser point cloud[J]. Laser Technology, 2022, 46(2): 220-225(in Chinese). |
[15] |
姜友谊, 张成健, 韩少宇, 等. 基于无人机三维点云的玉米植株自动计数研究[J]. 浙江农业学报, 2022, 34(9): 2032-2042.JIANG Y Y, ZHANG Ch J, HAN Sh Y, et al. Automatic counting of maize plants based on unmanned aerial vehicle (UAV) 3D point cloud [J]. Acta Agriculture Zhejiangensis, 2022, 34(9): 2032-2042(in Chinese). |
[16] |
廖娟, 汪鹞, 尹俊楠, 等. 基于双目视觉的作物点云获取与分割定位方法[J]. 江苏农业学报, 2019, 35(4): 847-852.LIAO J, WANG Y, YIN J N, et al. Point cloud acquisition, segmentation and location method of crops based on binocular vision[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(4): 847-852(in Chinese). |
[17] |
林承达, 韩晶, 谢良毅, 等. 田间作物群体三维点云柱体空间分割方法[J]. 农业工程学报, 2021, 37(7): 175-182.LIN Ch D, HAN J, XIE L Y, et al. Cylinder space segmentation method for field crop population using 3-D point cloud[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7): 175-182(in Chinese). |
[18] |
李健, 姚亮. 融合多特征深度学习的地面激光点云语义分割[J]. 测绘科学, 2021, 46(3): 133-139.LI J, YAO L. Ground laser point cloud semantic segmentation based on multi-feature deep learning[J]. Science of Surveying and Mapping, 2021, 46(3): 133-139(in Chinese). |
[19] |
曲金博, 王岩, 赵琪. DBSCAN聚类和改进的双边滤波算法在点云去噪中的应用[J]. 测绘通报, 2019(11): 89-92.QU J B, WANG Y, ZHAO Q. Application of DBSCAN clustering and improved bilateral filtering algorithm in point cloud denoising[J]. Bulletin of Surveying and Mapping, 2019(11): 89-92(in Chinese). |
[20] |
袁德宝, 王炳灵, 闫瑜, 等. 室内位置轨迹的聚类与可视化[J]. 测绘通报, 2019(5): 21-24.YUAN D B, WANG B L, YAN Y, et al. Clustering and visualization of indoor position trajectory[J]. Bulletin of Surveying and Mapping, 2019(5): 21-24(in Chinese). |
[21] |
张蕊. 基于激光点云的复杂三维场景多态目标语义分割技术研究[D]. 郑州: 战略支援部队信息工程大学, 2018: 10-12.ZHANG R. Research on polymorphic object semantic segmentation of complex 3D scenes based on laser point clouds[D]. Zhengzhou: The PLA Information Engineering University, 2018: 10-12(in Chinese). |