[1] ROWLEY H A, BALUJA S, KANADE T. Neural network-based face detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 20(1): 23-38.
[2] ROWLEY H A, BALUJA S, KANADE T. Rotation invariant neural network-based face detection[C]// Computer Vision and Pattern Recognition. New York, USA: IEEE, 1998: 38-44.
[3] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154. doi: 10.1023/B:VISI.0000013087.49260.fb
[4] MATHIAS M, BENENSON R, PEDERSOLI M, et al. Face detection without bells and whistles[C]// European Conference on Computer Vision. Zurich, Switzerland: ECCV, 2014: 720- 735.
[5] YAN J, LEI Z, WEN L, et al. The fastest deformable part model for object detection[C]//Computer Vision and Pattern Recognition. New York, USA: IEEE, 2014: 2497-2504.
[6] ZHU X, RAMANAN D. Face detection, pose estimation, and landmark localization in the wild[C]//Computer Vision and Pattern Re-cognition. New York, USA: IEEE, 2012: 2879-2886.
[7] KRIZHEVSKY A, SUTSKEVER I, HINTON G, et al. ImageNet classification with deep convolutional neural networks ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
[8] LEI H L, ZHANG B H. Crowd count algorithm based on multi-model deep convolution network integration[J]. Laser Technology, 2019, 43(4): 476-481(in Chinese).
[9] CHEN Q X, WU W Ch, ASKAR H. Detection algorithm based on multi-scale spotted target modeling[J]. Laser Technology, 2020, 44(4): 520-524(in Chinese).
[10] LI H, LIN Z, SHEN X, et al. A convolutional neural network cascade for face detection[C]// Computer Vision and Pattern Recognition. New York, USA: IEEE, 2015: 5325-5334.
[11] QIN H, YAN J, LI X, et al. Joint training of cascaded CNN for face detection[C]// Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 3456-3465.
[12] YANG S, LUO P, LOY C C, et al. From facial parts responses to face detection: A deep learning approach[C]//International Confe-rence on Computer Vision. New York, USA: IEEE, 2015: 3676-3684.
[13] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. doi: 10.1109/LSP.2016.2603342
[14] JIANG H, LEARNED-MILLER E. Face detection with the faster R-CNN[C]//Automatic Face and Gesture Recognition. New York, USA: IEEE, 2017: 650-657.
[15] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[16] ZHU C, ZHENG Y, LUU K, et al. CMS-RCNN: Contextual multi-scale region-based CNN for unconstrained face detection[EB/OL]. (2016-06-16)[2020-12-22]. https://arxiv.org/pdf/1606.05413.pdf.
[17] WAN S, CHEN Z, ZHANG T, et al. Bootstrapping face detection with hard negative examples[EB/OL]. (2016-08-07)[2020-12-22]. https://arxiv.org/pdf/1608.02236.pdf.
[18] ZHANG S, ZHU X, LEI Z, et al. S3fd: Single shot scale-invariant face detector[C]//International Conference on Computer Vision. New York, USA: IEEE, 2017: 192-201.
[19] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. Amsterdam, The Netherlands: Springer International Publishing, 2016: 21-37.
[20] ZHU C, TAO R, LUU K, et al. Seeing small faces from robust anchor's perspective[C]// Computer Vision and Pattern Recognition. New York, USA: IEEE, 2018: 5127-5136.
[21] LI J, WANG Y, WANG C, et al. DSFD: Dual shot face detector[C]// Computer Vision and Pattern Recognition. New York, USA: IEEE, 2019: 5055-5064.
[22] GU Y, LU X Q, YANG L D, et al. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs[J]. Computers in Biology and Medicine, 2018, 103: 220-231. doi: 10.1016/j.compbiomed.2018.10.011
[23] LI Z, TANG X, HAN J, et al. PyramidBox+ +: High performance detector for finding tiny face[EB/OL]. (2019-08-07)[2020-12-22]. https://arxiv.org/pdf/1904.00386.pdf.
[24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-12-22]. https://arxiv.org/pdf/1409.1556.pdf.
[25] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// European Conference on Computer Vision. Munich, Germany: ECCV, 2018: 3-19.
[26] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Computer Vision and Pattern Recognition. New York, USA: IEEE, 2017: 936-944.
[27] LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[J]. Lecture Notes in Computer Science, 2018, 11215: 404-419.
[28] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Computer Vision and Pattern Recognition. New York, USA: IEEE, 2014: 1-9.
[29] BA J, MNIH V, KAVUKCUOGLU K. Multiple object recognition with visual attention[EB/OL]. (2015-04-23)[2020-12-22]. https://arxiv.org/pdf/1412.7755.pdf.
[30] YANG S, LUO P, LOY C C, et al. Wider face: A face detection benchmark[C]// Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 5525-5533.
[31] ZHANG H Sh. Research on key algorithms of face detection and face recognition in video surveillance[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 11-48(in Chinese).
[32] WANG M, SU H S, LIU G H, et al. Classroom face detection algorithm based on convolutional neural network[J]. Laser & Optoelectronics Progress, 2019, 56(21): 211501(in Chinese).