[1] |
CHEN X M, WANG H J, ZHOU X L, et al. Laser surface modification technology and research progress[J]. Materials Review, 2018, 32(s1):341-344(in Chinese). |
[2] |
CHEN G G, HAN J X, LIU D D, et al. Research of fire resistance ability and fire test of the steel roof truss[J]. Building Structure, 2017, 47(s2):227-231(in Chinese). |
[3] |
XING B, CHANG B H, DU D. Effects of process parameters on morphology of laser deposited layer on IC10 directionally solidified superalloy[J]. Transactions of the China Welding Institution, 2015, 36(7):88-92(in Chinese). doi: 10.1179/1432891715Z.0000000002167 |
[4] |
LABUDOVIC M, HU D, KOVACEVIC R. A three dimensional model for direct laser metal powder deposition and rapid prototyping[J]. Journal of Materials Science, 2003, 38(1):35-49. |
[5] |
MA Y Z, DONG Sh Y, XU B Sh, et al. Optimization of proceeding parameters in laser cladding Fe-based alloy[J]. China Surface Engineering, 2006, 19(1):154-160(in Chinese). |
[6] |
ZHANG F Z, SUN W L, WANG K D, et al. Optimization of laser cladding repair process parameters for thin-wall parts[J]. Surface Technology, 2019, 48(1):168-174(in Chinese). |
[7] |
WANG L F, SUN Y X, ZHU G X, et al. Optimization simulation of process parameters on the residual stress in 316L stainless steel by laser cladding[J]. Applied Laser, 2019, 39(3): 376-380(in Chinese). |
[8] |
ZHANG G, WURIKAIXI A, JIANG H F. Review on deformation control in laser cladding forming process[J]. Hot Working Technology, 2019, 48(2):14-17(in Chinese). |
[9] |
LIU T, YANG H O, WANG B, et al. Thermo-mechanical FEM simulation of me laser solid forming with different scanning patterns[J]. Foundry Technology, 2018, 39(7): 1505-1510(in Chinese). |
[10] |
HAN H, QI W J, DANG Y X, et al. Effect of path set on laser cladding temperature field and stress and strain field of 304 stainless steel[J]. Hot Working Technology, 2017, 46(12): 148-152(in Chinese). |
[11] |
DAI K, SHAW L. Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders[J]. Acta Materialia, 2004, 52(1):69-80. doi: 10.1016/j.actamat.2003.08.028 |
[12] |
QI H, YANG M, QI F. Numerical simulation of effects of scanning path on electron beam selective melting process of Ti-6Al-4V[J]. Transactions of the China Welding Institution, 2009, 30(8):5-8. |
[13] |
GONG X Y, YOU W, GAO Sh Y, et al. Numerical simulation of temperature field in laser cladding for different scanning path[J]. Journal of North China Institute of Science and Technology, 2016, 13(5):48-54(in Chinese). |
[14] |
WANG Y Ch, SUN W L, HUANG Y, et al. Research of decision method of laser cladding sequence selection based on temperature field evaluation[J]. Laser Technology, 2018, 42(5):605-610(in Chinese). |
[15] |
ZOU X B, YI D K, GU J J. Research on cracking of laser cladding[J]. Laser Journal, 2010, 31(5):44-45(in Chinese). |
[16] |
OUYANG Z Y, LU G J, GUO L, et al. Simulation analysis of temperature distribution of laser welding and calculation of weld penetration depth[J]. Applied Laser, 2018, 38(1):52-57(in Chinese). |