[1] FRAZIER W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928. doi: 10.1007/s11665-014-0958-z
[2] GU D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164. doi: 10.1179/1743280411Y.0000000014
[3] GHAYOOR M, LEE K, HE Y, et al. Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties[J]. Additive Manufacturing, 2020, 32(5): 101011.
[4] 李俊辉, 任维彬, 任玉中, 等. 钛合金部件激光再制造材料与工艺研究进展[J]. 激光技术, 2023, 47(3): 353-359.LI J H, REN W B, REN Y Zh, et al. Research progress of laser remanufacturing materials and processes for titanium alloy parts[J]. Laser Technology, 2023, 47(3): 353-359(in Chinese).
[5] WANG Y M, VOISIN T, MCKEOWN J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 2017, 17(1): 63-71.
[6] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. doi: 10.1016/j.pmatsci.2019.100578
[7] TOLOSA I, GARCIANDÍA F, ZUBIRI F, et al. Study of mechanical properties of AISI316 stainless steel processed by "selective laser melting", following different manufacturing strategies[J]. International Journal of Advanced Manufacturing Technology, 2010, 51(5): 639-647.
[8] ROTTGER A, GEENEN K, WINDMANN M, et al. Comparison of microstructure and mechanical properties of 316L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material[J]. Materials Science and Engineering, 2016, A678: 365-376.
[9] MERTENS A, REGINSTER S, CONTREPOIS Q, et al. Microstructures and mechanical properties of stainless steel AISI 316L processed by selective laser melting[J]. Materials Science Forum, 2014, 783/786: 898-903.
[10] GUAN K, WANG Z, GAO M, et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel[J]. Materials & Design, 2013, 50(9): 581-586.
[11] NGUYEN Q B, ZHU Z, NG F L, et al. High mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting[J]. Journal of Materials Science and Technology, 2018, 35(2): 388-394.
[12] WANG Z Q, PALMER T A, BEESE A M. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing[J]. Acta Materialia, 2016, 110: 226-235. doi: 10.1016/j.actamat.2016.03.019
[13] ZOU Y, TAN C, QIU Z, et al. Additively manufactured SiC-reinforced stainless steel with excellent strength and wear resistance[J]. Additive Manufacturing, 2021, 41 (1): 101971.
[14] ALMANGOUR B, BAEK M S, GRZESIAK D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting[J]. Materials Science & Engineering, 2018, A712: 812-818.
[15] ALMANGOUR B, GRESIAK D, YANG J M. Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting[J]. Journal of Alloys and Compounds, 2016, 680: 480-493. doi: 10.1016/j.jallcom.2016.04.156
[16] GHAYOOR M, LEE K, HE Y, et al. Selective laser melting of 304L austenitic oxide dispersion strengthened steel: Processing, microstructural evolution and strengthening mechanisms[J]. Materials Science Engineering, 2020, A788: 139532.
[17] FISCHER P, ROMANO V, WEBER H P, et al. Sintering of commercially pure titanium powder with a Nd∶YAG laser source[J]. Acta Materialia, 2003, 51(6): 1651-1662. doi: 10.1016/S1359-6454(02)00567-0
[18] ALMANGOUR B, GRZESIAK D, BORKAR T, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/316L nanocomposites fabricated by selective laser melting[J]. Materials Design, 2017, 138: 119-128.
[19] ZHOU X, de HOSSON J T M. Reactive wetting of liquid metals on ceramic substrates[J]. Acta Materialia, 1996, 44(2): 421-426. doi: 10.1016/1359-6454(95)00235-9
[20] TAKAMICHI I, RODERICK I G. The physical properties of liquid metals[M]. Cambridge, UK: Clarendon Press, 1993: 48-56.
[21] SIMCHI A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features[J]. Materials Science and Engineering, 2006, A428(1/2): 148-158.
[22] SIMCHI A, POHL H. Direct laser sintering of iron-graphite powder mixture[J]. Materials Science and Engineering, 2004, A383(2): 191-200.
[23] SAEIDI K, GAO X, ZHONG Y, et al. Hardened austenite steel with columnar subgrain structure formed by laser melting[J]. Materials Science and Engineering, 2015, A625: 221-229.
[24] SALMAN O O, FUNK A, WASKE A, et al. Additive manufacturing of a 316L steel matrix composite reinforced with CeO2 particles: Process optimization by adjusting the laser scanning speed[J]. Technologies, 2018, 6(1): 25. doi: 10.3390/technologies6010025
[25] HAN Y, ZHANG Y, JING H, et al. Selective laser melting of low-content graphene nanoplatelets reinforced 316L austenitic stainless steel matrix: Strength enhancement without affecting ductility[J]. Additive Manufacturing, 2020, 34(8): 101381.
[26] SIMCHI A, PETZOLDT F, POHL H. Direct metal laser sintering: Material considerations and mechanisms of particle bonding[J]. International Journal of Powder Metallurgy, 2001, 37(2): 49-61.
[27] NIENDORF T, LEUDERS S, RIEMER A, et al. Highly anisotropic steel processed by selective laser melting[J]. Metallurgical and Materials Transactions, 2013, B44(4): 794-799.
[28] LI X, WILLY H J, CHANG S, et al. Selective laser melting of stainless steel and alumina composite: Experimental and simulation studies on processing parameters, microstructure and mechanical properties[J]. Materials and Design, 2018, 145: 1-10.
[29] TAN C, ZHOU K, KUANG M, et al. Microstructural characterisation and properties of selective laser melted maraging steel with different build directions[J]. Science and Technology of Advanced Materials, 2018, 19(1): 746-758.
[30] WANG Y, LIU Z H, ZHOU Y Z, et al. Microstructure and mechanical properties of TiN particles strengthened 316L steel prepared by laser melting deposition process[J]. Materials Science and Engineering, 2021, A814: 141220.
[31] ZHANG X Y, ZHONG J, GUO S L, et al. Control of deformation and annealing process to produce incoherent Σ3 boundaries in Hastelloy C-276 alloy[J]. Nuclear Materials and Energy, 2021, 27: 100944.
[32] LI J, QU H, BAI J. Grain boundary engineering during the laser powder bed fusion of TiC/316L stainless steel composites: New mechanism for forming TiC-induced special grain boundaries[J]. Acta Materialia, 2022, 226: 117605.
[33] ZHONG Y, LIU L, ZOU J, et al. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting[J]. Journal of Materials Science Technology, 2020, 42(1): 97-105.
[34] DRYEPONDT S, NANDWANA P, UNOCIC K A, et al. High temperature high strength austenitic steel fabricated by laser powder-bed fusion[J]. Acta Materialia, 2022, 231: 117876.
[35] WANG D, SONG C, YANG Y, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials Design, 2016, 100: 291-299.
[36] GU D, WANG H, DAI D, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting[J]. Scripta Materialia, 2015, 96(1): 25-28.
[37] ABRAMOVA M, ENIKEEV N, VALIEV R, et al. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel[J]. Materials Letters, 2014, 136: 349-352.
[38] WANG Y M, VOISIN T, MCKEOWN J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Natuer Materials, 2018, 17(1): 63-71.
[39] NGUYEN Q B, ZHU Z, NG F L, et al. High mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting[J]. Journal of Materials Science Technology, 2019, 35(2): 388-394.
[40] KONG D, DONG C, NI X, et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes[J]. Journal of Materials Science Technology, 2019, 35(7): 1499-1507.