[1] 谢兴阳, 李庆春, 丛林. 塑料光纤研制及其最新进展[J]. 橡塑技术与装备, 2009, 35(3): 25-30.XIE X Y, LI Q Ch, CONG L. Research for plastic optical fiber and its latest developments[J]. China Rubber/Plastics Technology and Equipment, 2009, 35(3): 25-30(in Chinese).
[2] 曾方, 周南桥. 塑料光纤制备技术的研究进展[J]. 塑料, 2003(6): 63-66.ZENG F, ZHOU N Q. Development of preparation technology for plastics optical fiber[J]. Plastics, 2003(6): 63-66 (in Chinese).
[3] 李忠辉, 葛文萍, 殷宗敏, 等. 渐变型聚合物光纤研究进展[J]. 光纤与电缆及其应用技术, 2003(1): 1-6.LI Zh H, GE W P, YIN Z M, et al. Research progress of graded index polymer optical fiber[J]. Optical Fiber & Electric Cable, 2003(1): 1-6(in Chinese).
[4] 江源. 渐变折射率聚合物光纤的研究进展[J]. 光通信研究, 2000(3): 56-62.JIANG Y. Progress of research of the graded index polymer optical fiber[J]. Study on Optical Communication, 2000(3): 56-62(in Chinese).
[5] 刘圣佳, 徐阳, 李长虹. 渐变型聚合物光纤的研究进展[J]. 绝缘材料, 2005(4): 46-49. doi: 10.3969/j.issn.1009-9239.2005.04.013LIU Sh J, XU Y, LI Ch H. Research progress in manufacture of graded-index polymer optical fiber[J]. Insulating Materials, 2005(4): 46-49(in Chinese). doi: 10.3969/j.issn.1009-9239.2005.04.013
[6] 宋军, 明海. 聚合物光纤技术的最新进展[J]. 光电子技术与信息, 1999(3): 1-5.SONG J, MING H. Recent development of polymer optical fiber technology[J]. Journal of Atmospheric and Environmental Optics, 1999(3): 1-5(in Chinese).
[7] SAVOVI S, DJORDJEVICH A, SAVOVI I. Theoretical investigation of bending loss in step-index plastic optical fibers[J]. Optics Communications, 2020, 475: 126200. doi: 10.1016/j.optcom.2020.126200
[8] 李庆春, 信春玲, 郭毅. 塑料光纤成型技术及应用前景展望[J]. 上海塑料, 2005(1): 4-9. doi: 10.3969/j.issn.1009-5993.2005.01.001LI Q Ch, XIN Ch L, GUO Y. Manufacture technology and application prospect of plastic optical fibers[J]. Shanghai Plastics, 2005(1): 4-9(in Chinese). doi: 10.3969/j.issn.1009-5993.2005.01.001
[9] 张洁, 郝晓东. 塑料光纤研究概况[J]. 化学推进剂与高分子材料, 2005(2): 19-22. doi: 10.3969/j.issn.1672-2191.2005.02.005ZHANG J, HE X D. Research survey of plastic optical fibers[J]. Chemical Propellants & Polymer Materials, 2005(2): 19-22(in Chinese). doi: 10.3969/j.issn.1672-2191.2005.02.005
[10] 王豆豆, 王丽莉. 低损耗传输太赫兹波的TOPAS多孔纤维设计[J]. 红外与激光工程, 2013, 42(9): 2409-2413. doi: 10.3969/j.issn.1007-2276.2013.09.020WANG D D, WANG L L. Design of TOPAS porous fiber for low-loss Terahertz wave guiding[J]. Infrared and Laser Engineering, 2013, 42(9): 2409-2413(in Chinese). doi: 10.3969/j.issn.1007-2276.2013.09.020
[11] BUNGE C A, GRIES T, BECKERS M. Polymer optical fibres fibre types, materials, fabrication, characterisation and applications[M]. Duxford, UK: Woodhead Publishing Series in Electronic and Optical Materials, 2016: 120-122.
[12] GROH W. Overtone absorption in macromolecules for polymer optical fibers[J]. Die Makromolekulare Chemie, 2003, 189(12): 2861-2874.
[13] ULRICH H, MLADEN J. Optoelectronic key elements for polymeric fiber transmission systems[M]. London, UK: Optical Fiber Applications, 2019: 1-3.
[14] AKIMOTO Y, ASAI M, KOIKE K, et al. Poly(styrene)-based graded-index plastic optical fiber for home networks[J]. Optics Letters, 2012, 37(11): 1853-1855. doi: 10.1364/OL.37.001853
[15] KOIKE Y, KOIKE K. Progress in low-loss and high-bandwidth plastic optical fibers[J]. Journal of Polymer Science, 2011, B49(1): 2-17.
[16] FASANO A, WOYESSA G, STAJANCA P, et al. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors[J]. Optical Materials Express, 2016, 6(2): 649-659. doi: 10.1364/OME.6.000649
[17] 阮环阳, 张万里. 含氟塑料光纤材料研究进展[J]. 浙江化工, 2019, 50(9): 1-3. doi: 10.3969/j.issn.1006-4184.2019.09.001RUAN H Y, ZHANG W L. Research progress on fluoroplastic optical fiber materials[J]. Zhejiang Chemical Industry, 2019, 50(9): 1-3(in Chinese). doi: 10.3969/j.issn.1006-4184.2019.09.001
[18] LEAL-JUNIOR A G, DIAZ C A R, AVELLAR L M, et al. Polymer optical fiber sensors in healthcare applications: A comprehensive review[J]. Sensors, 2019, 19(14): 3156. doi: 10.3390/s19143156
[19] KOIKE Y, ASAI M. The future of plastic optical fiber[J]. NPG Asia Materials, 2009, 1(1): 22-28. doi: 10.1038/asiamat.2009.2
[20] JOHNSON I, YUAN W, STEFANI A, et al. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer[J]. Electronics Letters, 2011, 47(4): 271-272. doi: 10.1049/el.2010.7347
[21] MARKOS C, STEFANI A, NIELSEN K, et al. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees[J]. Optics Express, 2013, 21(4): 4758-4765. doi: 10.1364/OE.21.004758
[22] EMILIYANOV G, HØIBV P E, PEDERSEN L H, et al. Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers[J]. Sensors, 2013, 13(3): 3242-3251. doi: 10.3390/s130303242
[23] ISLAM M S, SULTANA J, ATAI J, et al. Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation[J]. Optik, 2017, 145: 398-406. doi: 10.1016/j.ijleo.2017.07.061
[24] ISLAM M S, CORDEIOR C M B, FRANCO M A R, et al. Terahertz optical fibers[Invited][J]. Optics Express, 2020, 28(11): 16089-16117. doi: 10.1364/OE.389999
[25] WOYESSA G, FASANO A, MARKOS C, et al. ZEONEX microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing[J]. Optical Materials Express, 2017, 7(1): 286-295. doi: 10.1364/OME.7.000286
[26] LEON-SAVAL S G, LWIN R, ARGYROS A. Multicore composite single-mode polymer fiber[J]. Optics Express, 2012, 20(1): 141-148. doi: 10.1364/OE.20.000141
[27] 孔德鹏, 张大明, 袁苑, 等. 塑料光纤的研究与应用进展[J]. 光子学报, 2019, 48(11): 1148006.KONG D P, ZHANG D M, YUAN Y, et al. Progress in research and application of plastic optical fiber[J]. Acta Photonica Sinica, 2019, 48(11): 1148006(in Chinese).
[28] ISHIGURE T, SATO M, KONDO A. High-bandwidth graded-index polymer optical fiber with high-temperature stability[J]. Journal of Lightwave Technology, 2002, 20(8): 1443-1448. doi: 10.1109/JLT.2002.800798
[29] ISHIGURE T, ARUGA Y, KOIKE Y. High-bandwidth PVDF-clad GI POF with ultra-low bending loss[J]. Journal of Lightwave Technology, 2007, 25(1): 335-345. doi: 10.1109/JLT.2006.886666
[30] CHAPALO I, THEODOSIOU A, KALLI K, et al. Multimode fiber interferometer based on graded-index polymer CYTOP fiber[J]. Journal of Lightwave Technology, 2020, 38(6): 1439-1445. doi: 10.1109/JLT.2019.2954286
[31] YAMAKI Y, ASAI M, TAKAHASHI S, et al. Novel dopant for graded-index polymer optical fiber with high-thermal stability[J]. Applied Physics Express, 2010, 3(7): 071601. doi: 10.1143/APEX.3.071601
[32] KOIKE Y, AKIMOTO Y, ASAI M, et al. Poly(styrene)-based graded-index plastic optical fiber for home networks[J]. Optics Letters, 2012, 37(11): 1853-1855. doi: 10.1364/OL.37.001853
[33] KOIKE Y, INOUE A. High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission[J]. Journal of Lightwave Technology, 2016, 34(6): 1551-1555. doi: 10.1109/JLT.2016.2517086
[34] INOUE A, KOIKE Y. Low-noise graded-index plastic optical fiber for significantly stable and robust data transmission[J]. Journal of Lightwave Technology, 2018, 36(24): 5887-5892. doi: 10.1109/JLT.2018.2877386
[35] YUAN Y, KONG D P, WANG L L. A hollow ring-core polymer optical fiber for supra-high bandwidth data communication[J]. Optics Communications, 2019, 441: 176-184. doi: 10.1016/j.optcom.2019.02.055
[36] MURAMOTO K, INOUE A, KOIKE Y. Noise and distortion reduction in OFDM radio-over-fiber link by graded-index plastic optical fiber[J]. IEEE Photonics Technology Letters, 2020, 32(13): 835-838. doi: 10.1109/LPT.2020.2998774
[37] ZUBAIDI F, MONTERO S D, VAZQUEZ C. SI POF supporting power-over-fiber in multi-gbit/s transmission for in-home networks[J]. Journal of Lightwave Technology, 2021, 39(1): 112-121. doi: 10.1109/JLT.2020.3025444
[38] AKASHI T, INOUE A, KOIKE Y. Low-noise graded-index plastic optical fiber achieved by specific copolymerization process[J]. Journal of Lightwave Technology, 2021, 39(11): 3553-3559. doi: 10.1109/JLT.2021.3067647
[39] WANG Y N, LIU Y P, ZHAO W Q, et al. Multi-ring-air-core fiber supporting numerous radially fundamental OAM modes[J]. Journal of Lightwave Technology, 2022, 40(13): 4420-4428. doi: 10.1109/JLT.2022.3162852
[40] MATSUURA M. Power-over-fiber using double-clad fibers[J]. Journal of Lightwave Technology, 2022, 40(10): 3187-3196. doi: 10.1109/JLT.2022.3164566
[41] LIU J, XU T S, ZHONG M H, et al. A W-type double-cladding IR fiber with ultra-high numerical aperture[J]. Journal of Lightwave Technology, 2021, 39(7): 2158-2163. doi: 10.1109/JLT.2020.3045814
[42] CI Y J, REN F, LEI X, et al. A weakly-coupled air-hole-bow-tie-assisted few-mode fiber for short-haul MDM across C+L band[J]. Optical and Quantum Electronics, 2023, 55(10): 924. doi: 10.1007/s11082-023-05176-y
[43] YANG Zh X, ZHAO Y F, ZHANG Y F, et al. A novel few-mode multi-core fiber with large effective mode area and low inter-core crosstalk[J]. Optik, 2023, 273: 170416. doi: 10.1016/j.ijleo.2022.170416
[44] HABIB M A, REZA M S, ABDULARAZAK L F, et al. Extremely high birefringent and low loss microstructure optical waveguide: Design and analysis[J]. Optics Communications, 2019, 446: 93-99. doi: 10.1016/j.optcom.2019.04.060
[45] RAHAMAN M E, MONDAL H S, HOSSAIN M B, et al. Simulation of a highly birefringent photonic crystal fiber in terahertz frequency region[J]. SN Applied Sciences, 2020, 2(8): 1435. doi: 10.1007/s42452-020-03210-2
[46] EIJKELENBORG M, ARGYROS A, ZAGARI J, et al. Microstructured polymer optical fibre[J]. Optics Express, 2001, 9(7): 319-327. doi: 10.1364/OE.9.000319
[47] 夏长明, 周桂耀. 微结构光纤的研究进展及展望[J]. 激光与光电子学进展, 2019, 56(17): 170603.XIA Ch M, ZHOU G Y. Progress and prospect of microstructured optical fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170603(in Chinese).
[48] 王豆豆, 王丽莉, 张涛, 等. 低损耗高双折射太赫兹TOPAS光子带隙光纤[J]. 光子学报, 2014, 43(6): 606002.WANG D D, WANG L L, ZHANG T, et al. Low loss and high birefringence TOPAS photonic bandgap fiber at terahertz frequency[J]. Acta Photonica Sinica, 2014, 43(6): 606002(in Chinese).
[49] MA T, MARKOV A, WANG L L, et al. Graded index porous optical fibers-dispersion management in terahertz range[J]. Optics Express, 2015, 23(6): 7856-7869. doi: 10.1364/OE.23.007856
[50] ISLAM M S, SULTANA J, DINOVITSER A, et al. A novel ZEONEX based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications[J]. Optics Communications, 2018, 413: 242-248. doi: 10.1016/j.optcom.2017.12.061
[51] MEI S, KONG D P, WANG L L, et al. Suspended graded-index porous core POF for ultra-flat near-zero dispersion terahertz transmission[J]. Optical Fiber Technology, 2019, 52: 101946. doi: 10.1016/j.yofte.2019.101946
[52] HABIB M A, ANOWER M S, HASAN M R. Highly birefringent and low effective material loss microstructure fiber for THz wave guidance[J]. Optics Communications, 2018, 423: 140-144. doi: 10.1016/j.optcom.2018.04.022
[53] HABIB A, ANOWER S. Low loss highly birefringent porous core fiber for single mode terahertz wave guidance[J]. Current Optics and Photonics, 2018, 2(3): 215-220.
[54] ISLAM M S, SULTANA J, FAISAL M, et al. A modified hexagonal photonic crystal fiber for terahertz applications[J]. Optical Materials, 2018, 79: 336-339. doi: 10.1016/j.optmat.2018.03.054
[55] SULTANA J, ISLAM M S, FAISAL M, et al. Highly birefringent elliptical core photonic crystal fiber for terahertz application[J]. Optics Communications, 2018, 407: 92-96. doi: 10.1016/j.optcom.2017.09.020
[56] HABIB M A, ANOWER M S. Design and numerical analysis of highly birefringent single mode fiber in THz regime[J]. Optical Fiber Technology, 2019, 47: 197-203. doi: 10.1016/j.yofte.2018.11.006
[57] HABIB M A, ANOWER M S. Square porous core microstructure fiber for low loss terahertz applications[J]. Optics and Spectroscopy, 2019, 126(5): 607-613. doi: 10.1134/S0030400X19050126
[58] YAKASAI I K, ABAS P E, ALI S, et al. Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation[J]. Optical and Quantum Electronics, 2019, 51(4): 122. doi: 10.1007/s11082-019-1832-x
[59] UPADHYAY A, SINGH S, TAYA S, et al. A highly birefringent bend-insensitive porous core PCF for endlessly single-mode operation in THz regime: An analysis with core porosity[J]. Applied Nanoscience, 2021, 11(3): 1021-1030. doi: 10.1007/s13204-020-01664-9
[60] CHEN H B, CHEN D R, HONG Zh. Squeezed lattice elliptical-hole terahertz fiber with high birefringence[J]. Applied Optics, 2009, 48(20): 3943-3947. doi: 10.1364/AO.48.003943
[61] FAISAL M, ISLAM M S. Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted airholes[J]. Journal of Applied Optics, 2018, 57(13): 3340-3347. doi: 10.1364/AO.57.003340
[62] ISLAM M S, FAISAL M, ABDUR R. Dispersion flattened extremely high-birefringent kagome lattice elliptic core photonic crystal fiber in THz regime[J]. Optical and Quantum Electronics, 2019, 51(1): 35. doi: 10.1007/s11082-019-1744-9
[63] AHMED F, ROY S, AHMED K. A novel star shape photonic crystal fiber for low loss terahertz pulse propagation[J]. Nano Communication Networks, 2019, 19: 26-32. doi: 10.1016/j.nancom.2018.11.002
[64] SINGER A M, HAMEED M F, HEIKAL A M, et al. Highly birefringent slotted core photonic crystal fiber for terahertz waveguiding[J]. Optical and Quantum Electronics, 2021, 53(1): 9. doi: 10.1007/s11082-020-02643-8
[65] AMINUL I M, RAKIBUL I M, MOINUL I K M, et al. Highly birefringent slotted core photonic crystal fiber for THz wave propagation[J]. Physics of Wave Phenomena, 2020, 28: 58-67. doi: 10.3103/S1541308X20010021
[66] ISLAM M A, ISLAM M R, TASNIM Z, et al. Low-loss and dispersion-flattened octagonal porous core PCF for terahertz transmission applications[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44(4): 1583-1592. doi: 10.1007/s40998-020-00337-1
[67] JIBON R H, BULBUL A, NAHID A, et al. Design and numerical analysis of a photonic crystal fiber (PCF)-based flattened dispersion THz waveguide[J]. Optical Review, 2021, 28(5): 564-572. doi: 10.1007/s10043-021-00698-w
[68] ASADUZZAMAN S, REHANA H, BHUIYAN T, et al. Extremely high birefringent slotted core umbrella-shaped photonic crystal fiber in terahertz regime[J]. Applied Physics, 2022, B128(8): 148.
[69] HOSSAIN M S, SEN S, HOSSAIN M M. Reduction of effective material loss (EML) using decagonal photonic crystal fiber (D-PCF) for communication applications in the terahertz wave pulse[J]. Optical and Quantum Electronics, 2022, 54(10): 658. doi: 10.1007/s11082-022-04050-7
[70] MEI S, KONG D P, MU Q Y, et al. A porous core ZEONEX THz fiber with low loss and small dispersion[J]. Optical Fiber Technology, 2022, 69: 102834. doi: 10.1016/j.yofte.2022.102834
[71] XUE L, SHENG X Zh, JIA H Q, et al. Single-polarization low loss terahertz hollow-core anti-resonant fiber with high polarization loss ratio[J]. Optics Communications, 2023, 537: 129460. doi: 10.1016/j.optcom.2023.129460
[72] TANVIR J, AKHTAR S, TAHHAN S R, et al. Terahertz spectroscopic based bending effect inspection on hollow-core anti-resonant fiber[J]. Optical and Quantum Electronics, 2023, 55(4): 305. doi: 10.1007/s11082-023-04607-0
[73] CHEN J, TENG Ch X, KUANG R F, et al. Plastic optical fiber integrated with smartphone for gait monitoring[J]. IEEE Sensors Journal, 2023, 23(16): 18207-18218. doi: 10.1109/JSEN.2023.3291173
[74] TOMMASI F D, MASSARONI C, CAPONERO M A, et al. FBG-based mattress for heart rate monitoring in different breathing conditions[J]. IEEE Sensors Journal, 2023, 23(13): 14114-14122. doi: 10.1109/JSEN.2023.3275323
[75] CHEN P N, WANG B J, PENG H Sh, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020, 32(5): 1901971. doi: 10.1002/adma.201901971
[76] QUANDT B M, BRAUN F, FERRARIO D, et al. Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres[J]. Journal of the Royal Society Interface, 2017, 14(8): 20170060.
[77] HASEDA Y, BONEFACINO J, TAM H Y, et al. Measurement of pulse wave signals and blood pressure by a plastic optical fiber FBG sensor[J]. Sensors, 2019, 19(23): 5088. doi: 10.3390/s19235088
[78] LIANG H W, WANG Y Y, KAN L L, et al. Wearable and multifunctional self-mixing microfiber sensor for human health monitoring[J]. IEEE Sensors Journal, 2023, 23(3): 2122-2127. doi: 10.1109/JSEN.2022.3225196
[79] PANG Y N, LIU B, LIU J, et al. Singlemode-multimode-singlemode optical fiber sensor for accurate blood pressure monitoring[J]. Journal of Lightwave Technology, 2022, 40(13): 4443-4450. doi: 10.1109/JLT.2022.3155194
[80] PRESTI D, MASSARONI C, D'ABBRACCIO J, et al. Wearable system based on flexible FBG for respiratory and cardiac monitoring[J]. IEEE Sensors Journal, 2019, 19(17): 7391-7398. doi: 10.1109/JSEN.2019.2916320
[81] PANG Y N, LIU B, LIU J, et al. Wearable optical fiber sensor based on a bend singlemode-multimode-singlemode fiber structure for respiration monitoring[J]. IEEE Sensors Journal, 2021, 21(4): 4610-4617. doi: 10.1109/JSEN.2020.3032646
[82] LEAL-JUNIOR A G, DÍAZ C R, LEITãO C, et al. Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements[J]. Optics & Laser Technology, 2019, 109: 429-436. doi: 10.5768/JAO201940.0302004
[83] GOMES G L, MELLO R, LEAL-JUNIOR A. Respiration frequency rate monitoring using smartphone-integrated polymer optical fibers sensors with cloud connectivity[J]. Optical Fiber Technology, 2023, 78: 103313. doi: 10.1016/j.yofte.2023.103313
[84] KUANG R F, YE Y F, CHEN Z Y, et al. Low-cost plastic optical fiber integrated with smartphone for human physiological monitoring[J]. Optical Fiber Technology, 2022, 71: 102947. doi: 10.1016/j.yofte.2022.102947
[85] ARMAN A, DANIELE T. Optical fiber sensor based on plastic optical fiber and smartphone for measurement of the breathing rate[J]. IEEE Sensors Journal, 2019, 19(9): 3282-3287. doi: 10.1109/JSEN.2019.2894834
[86] HAN P, LI L Q, ZHANG H, et al. Low-cost plastic optical fiber sensor embedded in mattress for sleep performance monitoring[J]. Optical Fiber Technology, 2021, 64: 102541. doi: 10.1016/j.yofte.2021.102541
[87] XU W, SHEN Y, YU Ch Y, et al. Long modal interference in multimode fiber and its application in vital signs monitoring[J]. Optics Communications, 2020, 474: 126100. doi: 10.1016/j.optcom.2020.126100
[88] LEBER A, CHOLST B, SANDT J, et al. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations[J]. Advanced Functional Materials, 2019, 29(5): 1802629. doi: 10.1002/adfm.201802629
[89] BAI H D, LI Sh, TU Y Q, et al. Stretchable distributed fiber-optic sensors[J]. Science, 2020, 370(6518): 848-852. doi: 10.1126/science.aba5504
[90] LI H, LI H B, LOU X P, et al. Soft optical fiber curvature sensor for finger joint angle proprioception[J]. Optik, 2019, 179: 298-304. doi: 10.1016/j.ijleo.2018.10.187
[91] ABRO Z, HONG Ch Y, CHEN N L, et al. A fiber Bragg grating-based smart wearable belt for monitoring knee joint postures[J]. Textile Research Journal, 2019, 90(3/4): 386-394.
[92] REZENDE A, ALVES C, MARQUES I, et al. Polymer optical fiber goniometer: A new portable, low cost and reliable sensor for joint analysis[J]. Sensors, 2018, 18(12): 4293. doi: 10.3390/s18124293
[93] LI J, LIU J, LI Ch, et al. Wearable wrist movement monitoring using dual surface-treated plastic optical fibers[J]. Materials, 2020, 13(15): 3291. doi: 10.3390/ma13153291
[94] LEAL-JUNIO A, GUO J J, MIN R, et al. Photonic smart bandage for wound healing assessment[J]. Photonics Research, 2020, 9(3): 272.
[95] TANG Z J, GOMEZ D, HE Ch Y, et al. A U-shape fibre-optic pH sensor based on hydrogen bonding of ethyl cellulose with a sol-gel matrix[J]. Journal of Lightwave Technology, 2021, 39(5): 1557-1564. doi: 10.1109/JLT.2020.3034563
[96] FENG Y G, JU L H, JIA H, et al. Intentionally light-loss carbon-optic fiber (COF) twisted sensor for calf strength sensing via monitoring vastus medialis[J]. IEEE Sensors Journal, 2023, 23(9): 9271-9279. doi: 10.1109/JSEN.2023.3244576
[97] IQBAL F, BISWAS S, BULBUL A, et al. Alcohol sensing and classification using PCF-based sensor[J]. Sensing and Bio-Sensing Research, 2020, 30: 100384. doi: 10.1016/j.sbsr.2020.100384
[98] HOSSAIN M S, HUSSAIN N, HOSSAIN Z, et al. Performance analysis of alcohols sensing with optical sensor procedure using circular photonic crystal fiber (C-PCF) in the terahertz regime[J]. Sensing and Bio-Sensing Research, 2022, 35: 100469. doi: 10.1016/j.sbsr.2021.100469
[99] GOWRI A, ALLWYN R, RAMAKRISHNA B, et al. U-bent plastic optical fiber probes as refractive index based fat sensor for milk quality monitoring[J]. Optical Fiber Technology, 2019, 47: 15-20. doi: 10.1016/j.yofte.2018.11.019
[100] ZHAO H X, WANG F, WANG Zh Y, et al. Refractive index sensor based on a gradually hot-pressed flatted plastic optical fiber[J]. Optics Communications, 2023, 532: 129258. doi: 10.1016/j.optcom.2023.129258
[101] LIU X J, QU Ch F, ZHOU S J, et al. Simple and stable gas-liquid two-phase optical fiber sensor for acetone based on cholesteric liquid crystal[J]. Optics Communications, 2023, 526: 128890. doi: 10.1016/j.optcom.2022.128890
[102] BAO L F, DONG X Y, SHEN Ch Y, et al. High sensitivity liquid level sensor based on a hollow core fiber structure[J]. Optics Communications, 2021, 499: 127279. doi: 10.1016/j.optcom.2021.127279
[103] YE Y F, ZHAO Ch J, WANG Zh, et al. Portable multihole plastic optical fiber sensor for liquid-level and refractive index monitoring[J]. IEEE Sensors Journal, 2023, 23(3): 2161-2168. doi: 10.1109/JSEN.2022.3228224
[104] REZA S, HABIB A. Extremely sensitive chemical sensor for terahertz regime based on a hollow-core photonic crystal fibre[J]. Ukrainian Journal of Physical Optics, 2020, 21(1): 8-14. doi: 10.3116/16091833/21/1/8/2020
[105] KHAN M, ALI F, ISLAM M. THz sensing of CoViD-19 disinfecting products using photonic crystal fiber[J]. Sensing and Bio-Sensing Research, 2021, 33(3): 100447.
[106] JIBON R H, RAHAMAN M E, ALAHE M A. Detection of primary chemical analytes in the THz regime with photonic crystal fiber[J]. Sensing and Bio-Sensing Research, 2021, 33: 100427. doi: 10.1016/j.sbsr.2021.100427
[107] HASAN M, PANDEY T, HABIB M. Highly sensitive hollow-core fiber for spectroscopic sensing applications[J]. Sensing and Bio-Sensing Research, 2021, 34(4): 100456.
[108] ISLAM M S, SULTANA J, DINOVITSER A, et al. Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime[J]. Optics Communications, 2018, 426: 341-347. doi: 10.1016/j.optcom.2018.05.030
[109] AHMED K, AHMED F, ROY S, et al. Refractive index-based blood components sensing in terahertz spectrum[J]. IEEE Sensors Journal, 2019, 19(9): 3368-3375. doi: 10.1109/JSEN.2019.2895166
[110] BULBUL A, JIBON R, DAS S, et al. PCF based formalin detection by exploring the optical properties in THz regime[J]. Nanoscience & Nanotechnology-Asia, 2021, 11(3): 314-321.
[111] MONIR M, UDDIN M, SEN S. Design of a novel photonic crystal fiber and numerical analysis of sensitivity for the detection of illegal drugs in terahertz regime[J]. Sensing and Bio-Sensing Research, 2023, 39(4): 100551.
[112] YAKASAI I K, ABAS P L, BEGUM F. Proposal of novel photonic crystal fibre for sensing adulterated petrol and diesel with kerosene in terahertz frequencies[J]. IET Optoelectronics, 2020, 14(5): 319-326. doi: 10.1049/iet-opt.2019.0141
[113] HOSSAIN M B, PODDER E, MONDAL H S, et al. Bane chemicals detection through photonic crystal fiber in THz regime[J]. Optical Fiber Technology, 2020, 54: 102102. doi: 10.1016/j.yofte.2019.102102
[114] FERDOUS A, ANOWER M, MUSHA M A, et al. A heptagonal PCF-based oil sensor to detect fuel adulteration using terahertz spectrum[J]. Sensing and Bio-Sensing Research, 2022, 36: 100485. doi: 10.1016/j.sbsr.2022.100485
[115] ZHAO H X, WANG F, CHENG P H. A plastic optic fiber sensor with temperature compensation for refractive index measurement[J]. Optical Fiber Technology, 2023, 79(2): 103365.
[116] TIAN K, FARRELL G, LEWIS E, et al. A high sensitivity temperature sensor based on balloon-shaped bent SMF structure with its original polymer coating[J]. Measurement Science and Technology, 2018, 29(8): 085104. doi: 10.1088/1361-6501/aac992
[117] GUO J J, ZHOU B Q, YANG Ch X, et al. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring[J]. Advanced Functional Materials, 2019, 29(33): 1902898. doi: 10.1002/adfm.201902898
[118] SUI K Y, IOANNOU A, MENEGHETTI M, et al. Temperature sensing of the brain enabled by directly inscribed Bragg gratings in CYTOP polymer optical fiber implants[J]. Optical Fiber Technology, 2023, 80: 103478. doi: 10.1016/j.yofte.2023.103478
[119] LEAL-JUNIOR A, FRIZERA-NETO A, MARQUES C, et al. A polymer optical fiber temperature sensor based on material features[J]. Sensors, 2018, 18(1): 301. doi: 10.3390/s18010301
[120] SU H Y, ZHANG Y D, MA K, et al. Tip packaged high-temperature miniature sensor based on suspended core optical fiber[J]. Journal of Lightwave Technology, 2020, 38(15): 4160-4165.
[121] KHAN M. Development of a highly sensitive and low hysteresis temperature sensing system with PEDOT: PSS containing polymer sensing membrane[J]. IEEE Sensors Journal, 2023, 23(1): 669-676. doi: 10.1109/JSEN.2022.3223380
[122] WANG H X, LIAO M M, XIAO H F, et al. High sensitivity temperature sensor based on a PDMS-assisted bow-shaped fiber structure[J]. Optics Communications, 2021, 481: 126536. doi: 10.1016/j.optcom.2020.126536
[123] LIU Q P, WANG D Y, WANG Ch F, et al. Ultrasensitive temperature sensor based on optic fiber Fabry-Pérot interferometer with vernier effect[J]. Optics Communications, 2023, 541: 129567. doi: 10.1016/j.optcom.2023.129567
[124] HU J H, LI D, LIU Zh G, et al. Polymer-coated fiber-optic Fabry-Perot interferometer-based temperature sensor with high sensitivity[J]. Optical Fiber Technology, 2023, 81: 103471. doi: 10.1016/j.yofte.2023.103471
[125] YANG T Y, LIU Ch, LIU X, et al. Fiber optic high temperature sensor based on ZnO composite graphene temperature sensitive material[J]. Optics Communications, 2022, 515: 128222. doi: 10.1016/j.optcom.2022.128222
[126] QIU Sh, YUAN J H, ZHOU X, et al. Highly sensitive temperature sensing based on all-solid cladding dual-core photonic crystal fiber filled with the toluene and ethanol[J]. Optics Communications, 2020, 477: 126357. doi: 10.1016/j.optcom.2020.126357
[127] WANG X Y, WANG Y, LING Q, et al. Seven-core fiber embedded ultra-long period grating for curvature, torsion or temperature sensing[J]. Optics Communications, 2023, 536: 129351. doi: 10.1016/j.optcom.2023.129351
[128] LEI X Q, FENG Y, DONG X P. High-temperature sensor based on a special thin-diameter fiber[J]. Optics Communications, 2020, 463: 125386. doi: 10.1016/j.optcom.2020.125386
[129] PIZZAIA J P L, CASTELLANI C E S, LEAL-JUNIOR A G. Highly sensitive temperature sensing based on a birefringent fiber Sagnac loop[J]. Optical Fiber Technology, 2022, 72: 102949. doi: 10.1016/j.yofte.2022.102949
[130] LIU Q P, WANG Ch F, LIU W F, et al. Large-range and high-sensitivity fiber optic temperature sensor based on Fabry-Pérot interferometer combined with FBG[J]. Optical Fiber Technology, 2022, 68: 102794. doi: 10.1016/j.yofte.2021.102794
[131] ZHANG Y X, YU J J, LIU P L, et al. All-fiber temperature and humidity sensor based on photopolymer and polydimethylsiloxane with low-crosstalk and high-sensitivity[J]. Optical Fiber Technology, 2023, 80: 103410. doi: 10.1016/j.yofte.2023.103410
[132] LIU J X, XU M J, ABBAS L G, et al. High-sensitivity temperature sensor based on Mach-Zehnder interference of asymmetric taper-shaped ultraviolet glue[J]. Optical Fiber Technology, 2022, 72: 102997. doi: 10.1016/j.yofte.2022.102997
[133] DUPUIS A, GUO N, GAO Y, et al. Prospective for biodegradable microstructured optical fibers[J]. Optics Letters, 2007, 32(2): 109-111. doi: 10.1364/OL.32.000109
[134] SHADMAN S, NGUYEN-DANG T, DAS T, et al. Microstructured biodegradable fibers for advanced control delivery[J]. Advanced Functional Materials, 2020, 30(13): 1910283. doi: 10.1002/adfm.201910283
[135] GIEREJ A, ROCHLITZ K, FILIPKOWSKI A, et al. Microstructured optical fiber made from biodegradable and biocompatible poly(D, L-Lactic Acid) (PDLLA)[J]. Journal of Lightwave Technology, 2023, 41(1): 275-285. doi: 10.1109/JLT.2022.3205451
[136] ZHANG Y X, NING Y G, ZHANG M, et al. Spider silk-based fiber magnetic field sensor[J]. Journal of Lightwave Technology, 2021, 39(20): 6631-6636. doi: 10.1109/JLT.2021.3100896
[137] ORELMA H, HOKKANEN A, LEPPäNEN I, et al. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications[J]. Cellulose, 2020, 27(3): 1543-1553. doi: 10.1007/s10570-019-02882-3
[138] FUJIWARA E, CABRAL T D, SATO M, et al. Agarose-based structured optical fibre[J]. Scientific Reports, 2020, 10: 7035. doi: 10.1038/s41598-020-64103-3
[139] GUO J J, LIU X Y, NAN J, et al. Highly stretchable, strain sensing hydrogel optical fibers[J]. Advanced Materials, 2016, 28(46): 10244-10249. doi: 10.1002/adma.201603160
[140] MISHRA A, DÉSÉVÉDAVY F, PETIT L, et al. Core-clad phosphate glass fibers for biosensing[J]. Materials Science and Engineering, 2019, C96(1): 458-465.
[141] PANG W, XIAO Z Y, WEI X B, et al. Biocompatible polymer optical fiber with a strongly scattering spherical end for interstitial photodynamic therapy[J]. Optics Letters, 2023, 48(15): 3849-3852. doi: 10.1364/OL.497596
[142] JORGENSON R C, YEE S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators, 1993, B12(3): 213-220.
[143] LIU W, LIU Zh H, ZHANG Y, et al. Specialty optical fibers and 2D materials for sensitivity enhancement of fiber optic SPR sensors: A review[J]. Optics & Laser Technology, 2022, 152(5): 108167.
[144] JING G, ZHOU J Q, LI K W, et al. Refractive index sensing based on a side-polished macrobend plastic optical fiber combining surface plasmon resonance and macrobending loss[J]. IEEE Sensors Journal, 2019, 19(14): 5665-5669. doi: 10.1109/JSEN.2019.2908418
[145] CENNAMO N, ARCADIO F, MARLETTA V, et al. A magnetic field sensor based on SPR-POF platforms and ferrofluids[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9504010.
[146] ZHANG Q, LIU H L, LI B, et al. High sensitivity surface plasmon resonance magnetic field sensor based on Au/gold nanoparticles/magnetic fluid in the hollow core fiber[J]. IEEE Sensors Journal, 2023, 23(12): 12899-12905. doi: 10.1109/JSEN.2023.3273708
[147] WANG Y, WANG J G, SHAO Y, et al. Highly sensitive surface plasmon resonance humidity sensor based on a polyvinyl-alcohol-coated polymer optical fiber[J]. Biosensors, 2021, 11(11): 461. doi: 10.3390/bios11110461
[148] TENG Ch X, LI M S, CHENG Y, et al. Investigation of U-shape tapered plastic optical fibers based surface plasmon resonance sensor for RI sensing[J]. Optik, 2022, 251: 168461. doi: 10.1016/j.ijleo.2021.168461
[149] XUE P, XU Y, QI J, et al. Mechanically hot-pressed flattened plastic optical fiber-based SPR sensor and its RI sensing[J]. Optics Communications, 2022, 522: 128635. doi: 10.1016/j.optcom.2022.128635
[150] ARCADIO F, ZENI L, CENNAMO N. Exploiting plasmonic phenomena in polymer optical fibers to realize a force sensor[J]. Sensors, 2022, 22(6): 2391. doi: 10.3390/s22062391
[151] LU Y P, TIAN F J, CHEN Y Zh, et al. Characteristics of a capillary single core fiber based on SPR for hydraulic pressure sensing[J]. Optics Communications, 2023, 530: 129125. doi: 10.1016/j.optcom.2022.129125
[152] LIU B, LIU J, PING L, et al. Rapid detection of SARS-CoV-2 nucleocapsid protein by a label-free biosensor based on optical fiber cylindrical micro-resonator[J]. IEEE Sensors Journal, 2023, 23(12): 12511-12518. doi: 10.1109/JSEN.2023.3274110
[153] WEI Y, LIU Ch B, ZHANG Y H, et al. All-Fiber SPR microfluidic chip for arctigenin detection[J]. IEEE Sensors Journal, 2023, 23(12): 12838-12844. doi: 10.1109/JSEN.2023.3269032
[154] HU J, SONG E L, LIU Y H, et al. Fiber laser-based lasso-shaped biosensor for high precision detection of cancer biomarker-CEACAM5 in serum[J]. Biosensors, 2023, 13(7): 674. doi: 10.3390/bios13070674
[155] D'MELLO Y, SKORIC J, MOUKARZEL L, et al. Wearable fiber optic sensors for biomechanical sensing via joint angle detection[C]// Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Berlin, Germang: IEEE Engineering in Medicine and Biology Society, 2019: 32221-33225.
[156] CENNAMO N, D'AGOSTINO G, PERRI C, et al. Proof of concept for a quick and highly sensitive on-site detection of SARS-CoV-2 by plasmonic optical fibers and molecularly imprinted polymers[J]. Sensors, 2021, 21(5): 1681. doi: 10.3390/s21051681
[157] CENNAMO N, PASQUARDINI L, ARCADIO F, et al. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor[J]. Talanta, 2021, 233: 122532. doi: 10.1016/j.talanta.2021.122532
[158] CENNAMO N, AGOSTINO G D, PASQUARDINI L, et al. (INVITED)Quantitative detection of SARS-CoV-2 virions in aqueous mediums by IoT optical fiber sensors[J]. Results in Optics, 2021, 5: 100177. doi: 10.1016/j.rio.2021.100177
[159] HABIB A, RASHED A, HAGEEN H M, et al. Extremely sensitive photonic crystal fiber-based cancer cell detector in the terahertz regime[J]. Plasmonics, 2021, 16(4): 1297-1306. doi: 10.1007/s11468-021-01409-6
[160] MOHAMMED N A, KHEDR O E, RABAIE E M, et al. Early detection of brain cancers biomedical sensor with low losses and high sensitivity in the terahertz regime based on photonic crystal fiber technology[J]. Optical and Quantum Electronics, 2023, 55(3): 230. doi: 10.1007/s11082-022-04515-9
[161] DAS S, MANDAL B, RAO V R, et al. Detection of tomato leaf curl new delhi virus DNA using U-bent optical fiber-based LSPR probes[J]. Optical Fiber Technology, 2022, 74: 103108. doi: 10.1016/j.yofte.2022.103108
[162] ALAM M K, VADIVEL K, NATESAN A, et al. Design of highly sensitive biosensors using hollow-core microstructured fibers for plasma sensing in aids with human metabolism[J]. Optical and Quantum Electronics, 2023, 55(2): 188. doi: 10.1007/s11082-022-04514-w
[163] GAMAL Y, YOUNIS B M, FURNISS D, et al. Mid-infrared water pollutant sensor based on SPR-PCF[J]. Optical and Quantum Electronics, 2023, 55(11): 966. doi: 10.1007/s11082-023-05207-8
[164] CENNAMO N, ZENI L, TORTORA P, et al. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment[J]. Talanta, 2018, 178(258): 955-961.
[165] FAIZ F, CRAN M J, ZHANG J H, et al. Graphene oxide doped alginate coated optical fiber sensor for the detection of perfluorooctanoic acid in water[J]. IEEE Sensors Journal, 2023, 23(12): 12861-12867. doi: 10.1109/JSEN.2023.3271657
[166] CENNAMO N, ZENI L, RICCA E, et al. Detection of naphthalene in sea-water by a label-free plasmonic optical fiber biosensor[J]. Talanta, 2019, 194: 289-297. doi: 10.1016/j.talanta.2018.10.051
[167] TENG Ch X, SHAO P, LI Sh W, et al. Double-side polished U-shape plastic optical fiber based SPR sensor for the simultaneous measurement of refractive index and temperature[J]. Optics Communications, 2022, 525: 128844. doi: 10.1016/j.optcom.2022.128844
[168] TIAN Sh, XIONG M, CHEN M, et al. Highly sensitive cascaded fiber SPR sensor with temperature compensation[J]. Optics Communications, 2023, 533: 129277. doi: 10.1016/j.optcom.2023.129277
[169] HIRAI Y, SUZUKI Y, MORISAWA M. Two-wavelength dye-doped swellable clad POF humidity sensor[J]. IEEE Sensors Journal, 2023, 23(8): 8435-8442. doi: 10.1109/JSEN.2023.3255888
[170] ZHANG M Zh, ZHU G X, LI T Sh, et al. A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water[J]. Optics Communications, 2020, 462: 124750. doi: 10.1016/j.optcom.2019.124750
[171] ZHANG Ch L, ZHANG X D, LIU C, et al. Corrosion sensor based on surface plasmon resonance effect of core-offset splicing fiber[J]. Optical Fiber Technology, 2023, 80: 103412. doi: 10.1016/j.yofte.2023.103412
[172] CAO Sh Q, SHAO Y, WANG Y, et al. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber[J]. Optics Express, 2018, 26(4): 3988-3994. doi: 10.1364/OE.26.003988
[173] ARCAS A D S, DUTRA F D S, ALLIL R C S B, et al. Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors[J]. Sensors, 2018, 18(2): 648. doi: 10.3390/s18020648
[174] PESAVENTO M, PROFUMO A, MERLI D, et al. An optical fiber chemical sensor for the detection of copper(Ⅱ) in drinking water[J]. Sensors, 2019, 19(23): 5246. doi: 10.3390/s19235246
[175] PESAVENTO M, ZENI L, LETIZIA D, et al. SPR-optical fiber-molecularly imprinted polymer sensor for the detection of furfural in wine[J]. Biosensors, 2021, 11(3): 72. doi: 10.3390/bios11030072