[1] 刘千礼, 范舟, 王洋. 稀土氧化物稳定t-ZrO2结构和电子性能的研究[J]. 功能材料, 2021, 52(11): 11087-11093. doi: 10.3969/j.issn.1001-9731.2021.11.011LIU Q L, FAN Zh, WANG Y. Investigation on the structure and electronic properties of rare earth oxide stabilized t-ZrO2[J]. Jorunal of Functional Materials, 2021, 52(11): 11087-11093 (in Chinese). doi: 10.3969/j.issn.1001-9731.2021.11.011
[2] 张加宏, 谢丽君, 陈虎, 等. 掺杂与应力对ZrO2薄膜电子结构和光学性质的影响[J]. 四川大学学报(自然科学版), 2019, 56(6): 1145-1150. doi: 10.3969/j.issn.0490-6756.2019.06.024ZHANG J H, XIE L J, CHEN H, et al. Effects of doping and stress on electronic structure and optical properties of ZrO2 thin films[J]. Journal of Sichuan University(Natural Science Edition), 2019, 56(6): 1145-1150(in Chinese). doi: 10.3969/j.issn.0490-6756.2019.06.024
[3] 赵晓慧, 吴音, 尹笑然, 等. 相结构对ZrO2陶瓷透光度的影响[J]. 稀有金属材料与工程, 2018, 47(S1): 18-21.ZHAO X H, WU Y, YIN X R, et al. The Effect of phase structure on the transmittance of ZrO2 ceramics[J]. Rare Metal Materials And Engineering, 2018, 47(S1): 18-21 (in Chinese).
[4] 李钱陶, 李定, 王潺, 等. Ta2O5/Al2O3激光陀螺反射镜等离子体环境稳定性研究[J]. 红外与激光工程, 2020, 49(S1): 97-103.LI Q T, LI D, WANG Ch, et al. Study on stability of Ta2O5/Al2O3 laser gyro mirrors exposed in plasma[J]. Infrared and Laser Engineering, 2020, 49(S1): 97-103 (in Chinese).
[5] 于龙宇, 王伟, 刘孟杰, 等. 原位沉积温度对电子束蒸镀Ta2O5薄膜性能的影响[J]. 半导体技术, 2020, 45(8): 632-637.YU L Y, WANG W, LIU M J, et al. Effects of in-situ deposition temperature on performances of Ta2O5 thin films prepared by electron beam evaporation[J]. Semiconductor Technology, 2020, 45(8): 632-637(in Chinese).
[6] 刘保剑, 段微波, 李大琪, 等. 退火温度对Ta2O5/SiO2多层反射膜结构和应力特性的影响[J]. 物理学报, 2019, 68(11): 114208. doi: 10.7498/aps.68.20182247LIU B J, DUAN W B, LI D Q, et al. Effect of annealing temperature on structure and stress properties of Ta2O5/SiO2 multilayer reflective coatings[J]. Acta Physica Sinica, 2019, 68(11): 114208(in Chinese). doi: 10.7498/aps.68.20182247
[7] 吕起鹏. 离子束溅射沉积Ta2O5/SiO2光学薄膜应力特性与应力形变调控研究[D]. 大连: 大连理工大学, 2019: 20-45.LU Q P. Study on stress properties and stress deformation control of Ta2O5/SiO2 optical films deposited by ion beam sputtering[D]. Dalian: Dalian University of Technology, 2019: 20-45 (in Chinese).
[8] 刘华松, 傅翾, 王利栓, 等. 离子束溅射参数与Ta2O5薄膜特性的关联性[J]. 红外与激光工程, 2013, 42(7): 1770-1775. doi: 10.3969/j.issn.1007-2276.2013.07.022LIU H S, FU H, WANG L Sh, et al. Correlation between properties of Ta2O5 thin films and preparative parameters by ion beam sputtering deposition[J]. Infrared and Laser Engineering, 2013, 42(7): 1770-1775 (in Chinese). doi: 10.3969/j.issn.1007-2276.2013.07.022
[9] 姜玉刚, 刘华松, 陈丹, 等. 基于离子束溅射Ta2O5薄膜的紫外吸收膜技术[J]. 光学精密工程, 2019, 27(3): 527-532.JIANG Y G, LIU H S, CHEN D, et al. Ultraviolet absorption film technology based on ion beam sputtering Ta2O5 thin films[J]. Optics and Precision Engineering, 2019, 27(3): 527-532 (in Chinese).
[10] 刘华松, 季一勤, 张锋, 等. 金属氧化物薄膜在中波红外光谱区内光学常数色散特性[J]. 光学学报, 2014, 34(8): 0831003.LIU H S, JI Y Q, ZHANG F, et al. Dispersive properties of optical constants of some metallic oxide thin films in the mid-infrared regions[J]. Acta Optica Sinica, 2014, 34(8): 0831003(in Chinese).
[11] 刘华松, 傅翾, 季一勤, 等. 离子束溅射制备氧化物薄膜沉积速率调整方法[J]. 红外与激光工程, 2014, 43(7): 2192-2197. doi: 10.3969/j.issn.1007-2276.2014.07.028LIU H S, FU H, JI Y Q, et al. Adjusting methods of deposition rates of oxide films prepared by IBS technology[J]. Infrared and Laser Engineering, 2014, 43(7): 2192-2197(in Chinese). doi: 10.3969/j.issn.1007-2276.2014.07.028
[12] 刘华松, 姜承慧, 王利栓, 等. 金属氧化物薄膜光学常数计算物理模型应用研究[J]. 光谱学与光谱分析, 2014, 34(5): 1163-1167. doi: 10.3964/j.issn.1000-0593(2014)05-1163-05LIU H S, JIANG Ch H, WANG L Sh, et al. Applied research on the physical model for calculating optical constant of metal oxide films[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1163-1167(in Chinese). doi: 10.3964/j.issn.1000-0593(2014)05-1163-05
[13] 常艳贺, 金春水, 李春, 等. 深紫外氧化物薄膜的光学特性[J]. 中国激光, 2011, 38(12): 1207004.CHANG Y H, JIN Ch Sh, LI Ch, et al. Optical properties of oxide thin films for deep ultraviolet[J]. Chinese Journal of Lasers, 2011, 38(12): 1207004(in Chinese).
[14] 李静平, 方明, 贺洪波, 等. 多晶氧化物薄膜及复合膜系应力模型[J]. 光学学报, 2012, 32(10): 1031004.LI J P, FANG M, HE H B, et al. Model of stress evolution in polycrystalline oxide and composite thin films[J]. Acta Optica Sinica, 2012, 32(10): 1031004 (in Chinese).
[15] 李定, 熊胜明. 离子束溅射氧化物薄膜的中红外特性[J]. 中国激光, 2015, 42(1): 0107002.LI D, XIONG Sh M. Mid-Infrared properties of oxide coatings prepared by ion beam sputtering deposition[J]. Chinese Journal of Lasers, 2015, 42(1): 0107002(in Chinese).
[16] 尚鹏, 熊胜明, 李凌辉, 等. 光谱法确定离子束溅射Ta2O5/SiO2薄膜的光学常数及其性能[J]. 光学学报, 2014, 34(5): 0531002.SHANG P, XIONG Sh M, LI L H, et al. Optical constants and properties of dual-ion-beam sputtering Ta2O5/SiO2 thin film by spectroscopy[J]. Acta Optica Sinica, 2014, 34(5): 0531002(in Chinese).
[17] 林斯乐, 龙博, 谢知. 离子束溅射Ta2O5薄膜光学性质的热处理研究[J]. 曲阜师范大学学报(自然科学版), 2018, 44(2): 77-80.LIN S L, LONG B, XIE Zh. Effects of annealing on optical properties of Ta2O5 film prepared by ion beam sputtering[J]. Journal of Qufu Normal University(Natural Science Editioin), 2018, 44(2): 77-80 (in Chinese).
[18] 袁文佳, 沈伟东, 郑晓雯, 等. 离子束溅射制备Nb2O5、Ta2O5和SiO2薄膜的光学、力学特性和微结构[J]. 光学学报, 2017, 37(12): 1231001.YUAN W J, SHEN W D, ZHENG X W, et al. Optical and mechanical properties and microstructures of Nb2O5, Ta2O5 and SiO2 thin films prepared by ion beam sputtering[J]. Acta Optica Sinica, 2017, 37(12): 1231001 (in Chinese).
[19] 许菲菲, 胡琴, 杨百良. XPS测量稀土氧化物薄膜禁带宽度的可行性研究[J]. 微纳电子技术, 2013, 50(3): 190-193.XU F F, HU Q, YANG B L. Study on the feasibility of measuring the band gap of rare earth oxide films by XPS[J]. Micronanoelectronic Technology, 2013, 50(3): 190-193(in Chinese).
[20] 王宇迪, 王鹤峰, 杨尚余, 等. 纳米压痕技术及其在薄膜/涂层体系中的应用[J]. 表面技术, 2022, 51(6): 138-159.WANG Y D, WANG H F, YANG Sh Y, et al. Nano-indentation technique and its application in film coating system[J]. Surface Technology, 2022, 51(6): 138-159(in Chinese).
[21] 杨宗岭, 杨诗婷, 田宪会, 等. 一种基于纳米压痕技术估算残余应力的计算模型[J]. 内蒙古工业大学学报(自然科学版), 2022, 41(4): 318-323.YANG Z L, YANG Sh T, TIAN X H, et al. A calculation model for estimating residual stress based on nanoindentation[J]. Journal of Inner Mongolia University of Technology(Natural Science Edition), 2022, 41(4): 318-323(in Chinese).
[22] 王建丰, 杨超, 柳宇柯, 等. 纳米压痕技术在页岩力学性质表征中的应用进展[J]. 石油与天然气地质, 2022, 43(2): 477-488.WANG J F, YANG Ch, LIU Y K, et al. Application progress of nanoindentation technology in characterization of shale mechanical properties[J]. Oil & Gas Geology, 2022, 43(2): 477-488(in Chinese).
[23] 王耀城, 刘定坤, 刘伟, 等. 纳米压痕测试技术在GFRP材料中的应用综述[J]. 材料导报, 2021, 35(19): 19214-19222.WANG Y Ch, LIU D K, LIU W, et al. A review: Application of nanointentation testing technology in GFRP materials[J]. Materials Reports, 2021, 35(19): 19214-19222(in Chinese).
[24] 赵亚贤, 马晔城, 程子强, 等. 基于纳米压痕技术的电子玻璃微观力学性能研究[J]. 浙江大学学报(工学版), 2021, 55(5): 984-990.ZHAO Y X, MA H Ch, CHENG Z Q, et al. Micromechanical properties of electronic glass using nanoindentation technology[J]. Journal of Zhejing University(Engineering Science Edition), 2021, 55(5): 984-990 (in Chinese).