[1] |
WANG J, CHEN Y F, LIU Q W, et al. Pollution measurement lidar to detect aerosol extinction characteristics and Ångström index [J]. Laser Technology, 2018, 42(6): 727-732(in Chinese). |
[2] |
ZHANG S, ZHAN J T, FU Q, et al. Influence of non-uniform smoke environment on the transmission characteristics of polarized light[J]. Acta Optica Sinica, 2018, 38(7): 0729002(in Chinese). doi: 10.3788/AOS201838.0729002 |
[3] |
ZHAO Ch M, WANG Y Sh, GUO L D, et al. The development of laser wireless energy transmission technology [J]. Laser Technology, 2020, 44(5): 538-545(in Chinese). |
[4] |
ZONG Q Sh, BIAN Q, MA H D, et al. Research progress of new sodium beacon laser [J]. Laser Technology, 2020, 44(4): 404-410(in Chinese). |
[5] |
CHEN Q R, YU X, CUI W N, et al. Visible light communication and performance analysis based on medium and short distance inter-satellite links[J]. Acta Optica Sinica, 2019, 39(10): 1006003 (in Chinese). doi: 10.3788/AOS201939.1006003 |
[6] |
KRUSE P W, McGLAUCHLIN L D, McQUISTAN R B. Elements of infrared technology: Generation, transmission and detection[M]. Oxford, UK: Pergamon Press, 1962: 361-363. |
[7] |
KIM I I, MCARTHUR B, KOREVAAR E J. Comparison of laser beam propagation at 785nm and 1550nm in fog and haze for optical wireless communications[J]. Proceedings of the SPIE, 2001, 4214: 26-37. doi: 10.1117/12.417512 |
[8] |
NABOULSI A, MAHER C. Fog attenuation prediction for optical and infrared waves[J]. Optical Engineering, 2004, 43(2): 319-329. doi: 10.1117/1.1637611 |
[9] |
IJAZ M, GHASSEMLOOY Z, PESEK J, et al. Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions[J]. Journal of Lightwave Technology, 2013, 31(11): 1720-1726. doi: 10.1109/JLT.2013.2257683 |
[10] |
ESMAIL M A, FATHALLAH H, ALOUINI M S. Analysis of fog effects on terrestrial free space optical communication links[C]//IEEE International Conference on Communications Workshops (ICC). New York, USA: IEEE, 2016: 151-156. |
[11] |
GHASSEMLOOY Z, POPOOLA W, RAJBHANDARI S. Optical wireless communications: System and channel modelling with MATLAB[M]. New York, USA: CRC Press, 2012: 113-115. |
[12] |
WANG Sh. Research on the discrimination between fog and haze[J]. Technology Wind, 2020(5): 139 (in Chinese). |
[13] |
AWAN M S, LEITGEB E, CAPSONI C, et al. Attenuation analysis for optical wireless link measurements under moderate continental fog conditions at Milan and Graz[C]//IEEE Vehicular Technology Conference. New York, USA: IEEE, 2008: 1-5. |
[14] |
FISCHER K, WITIW M, EISENBERG E. Optical attenuation in fog at a wavelength of 1.55 micrometers[J]. Atmospheric Research, 2008, 87(3/4): 252-258. |
[15] |
NADEEM F, JAVORNIK T, LEITGEB E, et al. Continental fog a-ttenuation empirical relationship from measured visibility data[J]. Radioengineering, 2010, 19(4): 596-600. |
[16] |
NADEEM F, LEITGEB E. Dense maritime fog attenuation prediction from measured visibility data[J]. Radioengineering, 2010, 19(2): 223-227. |
[17] |
BASAHEL A, ISLAM M R, SURIZA A Z, et al. Effect of rain & haze on availability of terrestrial free space optical link under tropical weather conditions[C]//2016 International Conference on Computer and Communication Engineering (ICCCE). New York, USA: IEEE, 2017: 378-381. |
[18] |
BASAHEL A, RAFIQUL I M, HABAEBI M H, et al. Visibility effect on the availability of a terrestrial free space optics link under a tropical climate[J]. Journal of Atmospheric and Solar, 2016, 143/144: 47-52. |