[1] |
MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0 |
[2] |
XIAO K H, LI M A, XIE Y, et al. Research status and prospect of femtosecond laser processing materials[J]. Journal of University of Science and Technology Liaoning, 2019, 42(3): 179-185(in Chin-ese). |
[3] |
SPENCE D E, KEAN P N, SIBBETT W. 60-fsec pulse generation from a self-mode-locked Ti∶ sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44. doi: 10.1364/OL.16.000042 |
[4] |
SQUIER J, COE S, CLAY K, et al. An alexandrite pumped Nd∶ glass regenerative amplifier for chirped pulse amplification[J]. Optics Communications, 1992, 92(1/3): 73-78. |
[5] |
LITTLE D J, AMS M, DEKKER P, et al. Femtosecond laser modification of fused silica: The effect of writing polarization on Si—O ring structure[J]. Optics Express, 2008, 16(24): 20029-20037. doi: 10.1364/OE.16.020029 |
[6] |
MAHMOOD A S, VENKATAKRISHNAN K, TAN B. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction[J]. Nanoscale Research Le-tters, 2013, 8(1): 477-477. doi: 10.1186/1556-276X-8-477 |
[7] |
WANG Zh J, JIA W, NI X Ch, et al. Numerical simulation of the heat affected zone of nickel ablated with femtosecond laser[J]. Laser Technology, 2007, 31(6): 578-580(in Chinese). |
[8] |
GAO Sh M, YAN K Zh, HAN P G, et al. Study on periodic structures on Si surface induced by femtosecond laser[J]. Laser Techno-logy, 2015, 39(3): 395-398(in Chinese). |
[9] |
YANG H, YU X Ch, WU Y F, et al. Research progress and application of femtosecond laser in micromachining[J]. Applied Laser, 2019, 39(2): 346-354(in Chinese). |
[10] |
LI W B. Research on femtosecond laser processing of silicon carbide ceramic material[D]. Harbin: Harbin Institute of Technology, 2011: 2-6(in Chinese). |
[11] |
YANG J J. Femtosecond laser "cold" micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 2004, 41(3): 42-52(in Chinese). |
[12] |
ZHU P F. Research on ultrafast laser processing technology[D]. Xi'an: X'an Technological University, 2014: 10-36(in Chinese). |
[13] |
ZHOU Y L. Study on mechanism and process of laser processing 3-D printing titanium alloy sheet[D]. Beijing: Beijing University of Technology, 2018: 2-35(in Chinese). |
[14] |
PECHOLT B, VENDAN M, DONG Y Y, et al. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(3): 239-250. |
[15] |
LI X X, JIA T Q, FENG D H, et al. Ablation mechanism of alumina under ultrashort pulse laser irradiation[J]. Acta Physica Sinica, 2004, 53(7): 2154-2158(in Chinese). doi: 10.7498/aps.53.2154 |
[16] |
SUN Y Zh, LIN X H, CHEN Y F. Theoretical model investigation about the mechanism of ultrashort-pulse laser ablation fused silica[J]. Journal of Functional Materials and Devices, 2008, 14(1): 38-42(in Chinese). |
[17] |
ANISIMOV S I, KAPELIOVICH B L, PEMLMAN T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Soviet Journal of Experimental and Theoretical Physics, 1974, 39: 375-377. |
[18] |
XU B, WU X Y, LING Sh Q, et al. Numerical simulation of thermal electron emission in metal films ablated by multi-pulse femtose-cond laser[J]. Laser & Optoelectronics Progress, 2012, 49(8): 083201(in Chinese). |
[19] |
XU Y, NING R X, BAO J, et al. Mechanism analysis of ablation of metal by femtosecond pulse laser[J]. Laser & Infrared, 2019, 49(4): 432-437(in Chinese). |
[20] |
WANG S Y, REN Y P, CHENG Ch W, et al. Micromachining of copper by femtosecond laser pulses[J]. Applied Surface Science, 2013, 265: 302-308. doi: 10.1016/j.apsusc.2012.10.200 |
[21] |
SAGHEBFAR M, TEHRANI M K, DARBANI S M R, et al. Erratum to: Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations[J]. Applied Physics, 2017, A123(2): 130(2017). |
[22] |
LI J L, WANG B F, WANG Zh W, et al. Thermal relaxation in ablation process of aluminum sheet by femtosecond laser [J]. Hydromechatronics Engineering, 2019, 47(24): 92-97. |
[23] |
LI Q, LAO H, LIN J, et al. Study of femtosecond ablation on aluminum film with 3-D two-temperature model and experimental verifications[J]. Applied Physics, 2011, A105(1): 125-129. |
[24] |
ZHANG W K, DAI W, ZHENG Zh Zh, et al. Numerical simulation and verification of free-surface evolution in laser processing of H13 tool steel[J]. Chinese Journal of Lasers, 2019, 46(7): 0702002(in Chinese). doi: 10.3788/CJL201946.0702002 |
[25] |
SHAN D Y, CHEN T. Simulation and process research of laser po-lishing die steel[J]. Electromachining & Mould, 2019(5): 44-50(in Chinese). |
[26] |
WANG T, WANG J, YAO T, et al. Modeling and simulation of metal surface in laser polishing[J]. Laser & Infrared, 2019, 49(9): 1068-1074(in Chinese). |
[27] |
VADALI M, MA C, DUFFLE N A, et al. Pulsed laser micro poli-shing: Surface prediction model[J]. Journal of Manufacturing Processes, 2012, 14(3): 307-315. doi: 10.1016/j.jmapro.2012.03.001 |
[28] |
ZHOU L, JIANG Y, ZHANG P, et al. Numerical and experimental investigation of morphological modification on fused silica using CO2 laser ablation[J]. Materials (Basel), 2019, 12(24): 4109. doi: 10.3390/ma12244109 |
[29] |
XU G, DAI Y, CUI J, et al. Simulation and experiment of femtose-cond laser polishing quartz material[J]. Integrated Ferroelectrics, 2017, 181(1): 60-69. doi: 10.1080/10584587.2017.1352332 |
[30] |
ZHANG X Zh, XIA F, XU J J. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit[J]. Acta Physica Sinica, 2017, 66(14): 144207(in Chinese). doi: 10.7498/aps.66.144207 |
[31] |
GUAY J M, CHARRON M, CÔTÉ G, et al. Enhanced plasmonic coloring of silver and formation of large laser-induced periodic surface structures using multi-burst picosecond pulses[J]. Advanced Optical Materials, 2016, 6(17): 1800189. |
[32] |
HU G, GUAN K, LU L, et al. Engineered functional surfaces by laser microprocessing for biomedical applications[J]. Engineering, 2018, 4(6): 822-830. doi: 10.1016/j.eng.2018.09.009 |
[33] |
DJOUDER M, LAMROUS O, MITICHE M D, et al. Electromagnetic particle-in-cell (PIC) method for modeling the formation of metal surface structures induced by femtosecond laser radiation[J]. A-pplied Surface Science, 2013, 280: 711-714. doi: 10.1016/j.apsusc.2013.05.047 |
[34] |
KODAMA S, YAMAGUCHI H, SHIMADA K, et al. Control of short-pulsed laser induced periodic surface structures with machining-picosecond laser nanotexturing with magnetic abrasive finishing[J]. Precision Engineering, 2019, 60: 428-436. doi: 10.1016/j.precisioneng.2019.06.015 |
[35] |
RUDENKO A, MAUCLAIR C, GARRELIE F, et al. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations[J]. Physical Review, 2019, B99, 235412. |
[36] |
ABOUSALEH A, KARIM E T, MAURICE C, et al. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr[J]. Applied Physics, 2018, A124(4): 308(2018). |
[37] |
YANG Q B, WANG H J, HUANG Y, et al. Experimental study on nanosecond laser processing of Ti6Al4V alloy [J]. Optical Technique, 2019, 45(2): 245-250(in Chinese). |
[38] |
YANG Y, LOU R, CHEN X, et al. Influence of energy fluence and overlapping rate of femtosecond laser on surface roughness of Ti-6Al-4V[J]. Optical Engineering, 2019, 58(10): 106107. |
[39] |
PERRY T L, WERSCHMOELLER D, LI X, et al. Pulsed laser po-lishing of micro-milled Ti6Al4V samples[J]. Journal of Manufacturing Processes, 2009, 11(2): 74-81. doi: 10.1016/j.jmapro.2009.10.001 |
[40] |
LIANG Ch Y, HU Y Zh, LIU N, et al. Laser polishing of Ti6Al4V fabricated by selective laser melting[J]. Metals, 2020, 10(2): 191. doi: 10.3390/met10020191 |
[41] |
CHEN F, LIU Q M, DU P, et al. Experimental study on femtosecond laser processing of GH4099 honeycomb core[J]. Aeronautical Manufacturing Technology, 2019, 62(s2): 46-51(in Chinese). |
[42] |
HUANG J F, WEI X, XIE X Zh, et al. Research on influences of condition parameters on laser polishing process[J]. Laser & Opto-electronics Progress, 2008, 45(12): 20-24(in Chinese). |
[43] |
PIMENOV S M, KONONENKO V V, RALCHENKO V G, et al. Laser polishing of diamond plates[J]. Applied Physics, 1999, A69(1): 81-88. |
[44] |
OSTHOLT R, WILLENBORG E, WISSENBACH K. Laser polishing of metallic freeform surfaces[J]. Journal of Laser Applications, 2010, 2010(1): 597-603. |
[45] |
JULIANA D S S, SEIFERT H J, WILHELM P. Laser surface modification and polishing of additive manufactured metallic parts[J]. Procedia CIRP, 2018, 74: 280-284. doi: 10.1016/j.procir.2018.08.111 |
[46] |
CHEN Y, TSAI W, LIU S, et al. Picosecond laser pulse polishing of ASP23 steel[J]. Optics and Laser Technology, 2018, 107: 180-185. doi: 10.1016/j.optlastec.2018.05.025 |
[47] |
GLOOR S, LUTHY W, WEBER H P. Laser polishing of extended diamond films[J]. Diamond Films and Technology, 1997, 7(4): 233-240. |