[1] |
LU P H, LIU J R, XUE L, et al. Microstructure and cracking beha-vior of K418 superalloy repaired by laser forming repairing[J]. Rare Metal Materials and Engineering, 2012, 41(2): 315-319(in Chin-ese). |
[2] |
LI Y J, WANG J, LIU P. Welding and application of dissimilar refractory materials[M]. Beijing: Chemical Industry Press, 2004: 84-86(in Chinese). |
[3] |
LUO G X, WU G Q, HUANG Zh, et al. Microstructures of Ni-Cr-Ti-Al laser claddings on K418 superalloy[J]. Chinese Journal of Lasers, 2007, 34 (2): 283-287(in Chinese). |
[4] |
LIU X B, YU G, PANG M, et al. Laser welding of superalloy K418 to 42CrMo steel[J]. Chinese Journal of Nonferrous Metals, 2008, 18 (3): 444-448(in Chinese). |
[5] |
LI Z Sh, KENNETH C, MILLS. The effect of γ' content on the densities of Ni-based superalloys[J]. Metallurgical & Materials Transactions, 2006, B37(5): 781-790. |
[6] |
MANSURI M, HADAVI S M M, ZARE E, et al. Thermal fatigue behaviour of Al-Si coated Inconel713LC[J]. Surface Engineering, 2015, 32(3): 201-206. |
[7] |
KESHAVARZ M K, TURENNE S, BONAKDAR A. Solidification behavior of Inconel713LC gas turbine blades during electron beam welding[J]. Journal of Manufacturing Processes, 2018, 31: 232-239. doi: 10.1016/j.jmapro.2017.11.021 |
[8] |
COLEMAN M, ALSHEHRI H, BANIK R, et al. Deformation mechanisms of IN713C nickel based superalloy during small punch testing[J]. Materials Science and Engineering, 2016, A650: 422-431. |
[9] |
KIM K S, LEE K A, KIM J H, et al. Manufacturing and high temperature mechanical properties of Inconel713C by using metal injection molding[J]. Advanced Materials Research, 2013, 602/604: 627-630. |
[10] |
BAHMANABADI H, REZANEZHAD S, AZADI M, et al. Characterization of creep damage and lifetime in Inconel-713C nickel-based superalloy by stress-based, strain/strain rate-based and continuum damage mechanics models[J]. Materials Research Express, 2018, 5(2): 1-34. |
[11] |
MENTL V, VLASIC F, BARTKOVA D, et al. Application of acoustic emission for identification of differences in fatigue damage of selected materials for power plants[J]. Key Engineering Materials, 2014, 627: 313-316. doi: 10.4028/www.scientific.net/KEM.627.313 |
[12] |
ŠULÁk I, OBRTLÍK K, ČELKO L, et al. Low cycle fatigue performance of Ni-based superalloy coated with complex thermal barrier coating[J]. Materials Characterization, 2018, 139: 347-354. doi: 10.1016/j.matchar.2018.03.023 |
[13] |
OBRTLÍK K, POSPÍŠILOVÁ S, JULIŠ M, et al. Fatigue behavior of coated and uncoated cast Inconel713LC at 800℃[J]. International Journal of Fatigue, 2012, 41: 101-106. doi: 10.1016/j.ijfatigue.2011.12.010 |
[14] |
YANG X Q, LI Y J, MA Q Sh, et al. Effect of TiB2 on microstructure and microhardness of Ni60 laser cladding coating[J]. Mecha-nical Manufacturing Abstracts (Welding Fascicles), 2015(5): 17-22(in Chinese). |
[15] |
GÄUMANN M, BEZENÇON C, CANALIS P, et al.Single-crystal laser deposition of superalloys: Processing microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062. doi: 10.1016/S1359-6454(00)00367-0 |
[16] |
NIE P L, OJO O A, LI Z G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J]. Acta Materialia, 2014, 77:85-95. doi: 10.1016/j.actamat.2014.05.039 |
[17] |
LIU G Z, ZHONG W H. Formation and resolving method of the structure defect about laser cladding coatings[J]. Surface Technology, 2012, 41 (5): 97-100(in Chinese). |
[18] |
TAN Y, LIAO J, LI J Y, et al. Microstructure evolution and microhardness of Inconel740 alloy in different heat-treatment conditions prepared by electron beam melting[J]. Material Engineering, 2015, 43(4): 19-24(in Chinese). |
[19] |
LI D, ZHANG Q L, ZHANG J, et al. Influence of atmospheres on morphology, microstructure and properties of laser cladding IN718 coatings[J]. Surface Technology, 2018, 47(7): 185-190(in Chin-ese). |
[20] |
QI H.Review of INCONEL718 alloy: Its history, properties, processing and developing substitutes[J]. Material Engineering, 2012 (8): 92-100(in Chinese). |
[21] |
SUI S, TAN H, CHEN J, et al. The influence of laves phases on the room temperature tensile properties of Inconel718 fabricated by powder feeding laser additive manufacturing[J]. Acta Materialia, 2019, 164: 413-427. doi: 10.1016/j.actamat.2018.10.032 |
[22] |
WANG K B, LV Y H, LIU Y X, et al. Influence of heat input on microstructure and mechanical property of pulsed plasma arc additive manufactured Inconel718 superalloy[J]. Material Guide, 2017, 31 (14): 100-104(in Chinese). |
[23] |
HE L, CHEN W J, TAN T L, et al. Microstructure and defects of Incone1718 superalloy joints with EB welding method[J]. Hot Processing, 2014, 43(5): 201-203(in Chinese). |