[1] |
DONADELLO S, MOTTA M, DEMIR A G, et al. Monitoring of laser metal deposition height by means of coaxial laser triangulation[J]. Optics and Lasers in Engineering, 2019, 112: 136-144. doi: 10.1016/j.optlaseng.2018.09.012 |
[2] |
XIONG Zh Y, ZHAO B. Design of a new laser thickness measurement instrument[J]. Laser Technology, 2011, 35(5):614-617(in Chinese). |
[3] |
DISAWAL R, PRAKASH S. Measurement of displacement using phase shifted wedge plate lateral shearing interferometry[J]. Optics and Laser Technology, 2016, 77: 64-71. |
[4] |
KUMAR Y P, CHATTERJEE S. Step height measurement using lateral shearing cyclic path optical configuration setup and polarization phase-shifting interferometry[J]. Optical Engineering, 2012, 51(2): 023601. doi: 10.1117/1.OE.51.2.023601 |
[5] |
YANG Sh M, ZHANG G F. A review of interferometry for geometric measurement[J]. Measurement Science and Technology, 2018, 29(10):102001. doi: 10.1088/1361-6501/aad732 |
[6] |
ZHAO W Q, SUN R D, QIU L R, et al. Lenses axial space ray tracing measurement[J]. Optics Express, 2010, 18(4): 3608-3617. doi: 10.1364/OE.18.003608 |
[7] |
ZHAO W Q, LIU W L, DING X, et al. Measurement method and apparatus for central lens thickness by confocal technique: China, CN101788271A[P]. 2010-03-17(in Chinese). |
[8] |
SHI L B, QIU L R, WANG Y, et al. Development of lens central thickness measurement system using laser differential confocal microscopy[J]. Chinese Journal of Scientific Instrument, 2012, 33(3): 683-688(in Chinese). |
[9] |
ZHENG Q, CHEN L, HAN Zh G, et al. A non-contact distance sensor with spectrally-spatially resolved white light interferometry[J]. Optics Communications, 2018, 424: 145-153. doi: 10.1016/j.optcom.2018.04.019 |
[10] |
KIM M G, PAHK H J. Fast and reliable measurement of thin film thickness profile based on wavelet transform in spectrally resolved white-light interferometry[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(2): 213-219. doi: 10.1007/s12541-018-0024-0 |
[11] |
YAO H B, LI L L, CHEN M M, et al. Design of measurement system of lens center thickness based on double-side optical confocal technology[J]. Laser Technology, 2016, 40(6): 912-915(in Chinese). |
[12] |
YU Q, ZHANG K, CUI Ch C, et al. Method of thickness measurement for transparent specimens with chromatic confocal microscopy[J]. Applied Optics, 2018, 57(33): 9722-9728. doi: 10.1364/AO.57.009722 |
[13] |
CHEN L C, NGUYEN D T, CHANG Y W. Precise optical surface profilometry using innovative chromatic differential confocal microscopy[J]. Optics Letters, 2016, 41(24): 5660-5663. doi: 10.1364/OL.41.005660 |
[14] |
ZHUO G Y, HSU C H, WANG Y H, et al. Chromatic confocal microscopy to rapidly reveal nanoscale surface/interface topography by position-sensitive detection[J]. Applied Physics Letters, 2018, 113(8): 083106. doi: 10.1063/1.5040502 |
[15] |
HUANG B, WANG W Q, BATES M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813. doi: 10.1126/science.1153529 |
[16] |
ICHIKAWA Y, YAMAMOTO K, MOTOSUKE M. Three-dimensional flow velocity and wall shear stress distribution measurement on a micropillar-arrayed surface using astigmatism PTV to understand the influence of microstructures on the flow field[J]. Microfluidics and Nanofluidics, 2018, 22(7): 73. doi: 10.1007/s10404-018-2095-8 |
[17] |
FUCHS T, HAIN R, KAHLER C J. Macroscopic three-dimensional particle location using stereoscopic imaging and astigmatic aberrations[J]. Optics Letters, 2014, 39(24): 6863-6866. doi: 10.1364/OL.39.006863 |
[18] |
FUCHS T, HAIN R, KAHLER C J. Three-dimensional location of micrometer-sized particles in macroscopic domains using astigmatic aberrations[J]. Optics Letters, 2014, 39(5): 1298-1301. doi: 10.1364/OL.39.001298 |
[19] |
LIU Zh P, SPEETJENS M F M, FRIJNS A J H, et al. Application of astigmatism mu-PTV to analyze the vortex structure of AC electroosmotic flows[J]. Microfluidics and Nanofluidics, 2014, 16(3): 553-569. doi: 10.1007/s10404-013-1253-2 |
[20] |
CIERPKA C, ROSSI M, SEGURA R, et al. A comparative analysis of the uncertainty of astigmatism-mu PTV, stereo-mu PIV, and mu PIV[J]. Experiments in Fluids, 2012, 52(3): 605-615. doi: 10.1007/s00348-011-1075-5 |