[1] |
WU J J, XIE Zh W, LIU Zh G, et al. Multiple-image encryption based on computational ghost imaging[J]. Optics Communications, 2016, 359:38-43. doi: 10.1016/j.optcom.2015.09.039 |
[2] |
LI W N, PHAN A H, PIAO M L, et al. Multiple-image encryption based on triple interferences for flexibly decrypting high-quality images[J]. Applied Optics, 2015, 54(11):3273. doi: 10.1364/AO.54.003273 |
[3] |
CHANG H T, SHUI J W, LIN K P. Image multiplexing and encryption using the nonnegative matrix factorization method adopting digital holography[J]. Applied Optics, 2017, 56(4):958. doi: 10.1364/AO.56.000958 |
[4] |
KONG D Zh, SHEN X J. Multiple-image encryption based on optical wavelet transform and multichannel fractional Fourier transform[J]. Optics & Laser Technology, 2014, 57: 343-349. |
[5] |
SHAN M, CHANG J, ZHONG Z, et al. Double image encryption based on discrete multiple-parameter fractional Fourier transform and chaotic maps[J]. Optics Communications, 2012, 285(21/22): 4227-4234. |
[6] |
SITU G H, ZHANG J J. Multiple-image encryption by wavelength multiplexing[J]. Optics Letters, 2005, 30 (11) :1306-1308. doi: 10.1364/OL.30.001306 |
[7] |
LIU Zh J, ZHANG Y, ZHAO H F, et al. Optical multi-image encryption based on frequency shift[J]. Optik—International Journal for Light and Electron Optics, 2011, 122(11):1010-1013. doi: 10.1016/j.ijleo.2010.06.039 |
[8] |
SHI Y S, SITU G H, ZHANG J J. Multiple-image hiding in the Fresnel domain[J]. Optics Letters, 2007, 32(13) :1914-1916. doi: 10.1364/OL.32.001914 |
[9] |
ZHONG W B, DENG Y H, FANG K T. Image encryption by using magic squares[C]//2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). New York, USA: IEEE, 2017: 771-775. |
[10] |
WANG D M, JIN Y Q. Semi-period of doubly even order magic square transformed digital images[J]. Journal of Zhejiang University, 2005, 32(3):273-276(in Chinese). |
[11] |
LIN Y, LIN J B. Study and application of magic square group in process of image scrambling[J]. Computer Technology & Development, 2012, 22(9):119-122(in Chinese). |
[12] |
LI T Y. An image encryption algorithm based on chaotic sequences and magic square transformation[J]. Network Security Technology & Application, 2006(5):90-92(in Chinese). |
[13] |
CHEN Q, LIAO X, CHEN Y. Modified image encryption based on chaotic sequences and rubik cube transformation[J]. Computer Engineering & Applications, 2005, 41(22):138-139(in Chinese). |
[14] |
WANG D M, HUANG L, WANG J R. Encrypting digital holograph with magic transformation[J]. Journal of Zhejiang University of Technology, 2007, 35(1):116-118(in Chinese). |
[15] |
LUO Q, WEI Q, MIAO X J. Blocked image compression and reconstruction algorithm based on compressed sensing[J]. Scientia Sinica Informationis, 2014, 44(8) :1036-1047 (in Chinese). |
[16] |
GAN L. Block compressed sensing of natural images[C] //2007 15th International Conference on Digital Signal Processing. New York, USA: IEEE, 2007: 403-406. |
[17] |
ZHOU N, YANG J, TAN C, et al. Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform[J]. Optics Communications, 2015, 354:112-121. doi: 10.1016/j.optcom.2015.05.043 |
[18] |
RAWAT N, KIM B, KUMAR R. Fast digital image encryption based on compressive sensing using structurally random matrices and Arnold transform technique[J]. Optik—International Journal for Light and Electron Optics, 2016, 127(4):2282-2286. doi: 10.1016/j.ijleo.2015.11.064 |
[19] |
LIU X Y, CAO Y P, LU P, et al. Optical image encryption technique based on compressed sensing and arnold transformation[J]. Optik—International Journal for Light and Electron Optics, 2013, 124(24):6590-6593. doi: 10.1016/j.ijleo.2013.05.092 |
[20] |
LI Y H. Improved model of image block compressed sensing[J]. Computer Engineering & Applications, 2011, 47(25):186-189(in Chinese). |
[21] |
QIAO J P, DENG L W, HE J, et al. Optimization of fast image encryption algorithm based on chaotic mapping[J]. Laser Technology, 2017, 41(6):897-903(in Chinese). |