[1] |
刘澈, 姜勇, 姚森敬, 等. 基于多传感器信息融合的绝缘子串自动识别方法[J]. 机械设计与制造, 2019(4): 220-224. doi: 10.3969/j.issn.1001-3997.2019.04.055LIU Ch, JIANG Y, YAO S J, et al. The method to automatic recognition of insulator based on multi-sensor information fusion[J]. Machinery Design & Manufacture, 2019(4): 220-224(in Chinese). doi: 10.3969/j.issn.1001-3997.2019.04.055 |
[2] |
MATIKAINEN L, LEHTOMÄKI M, AHOKAS E, et al. Remote sensing methods for power line corridor surveys[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 10-31. doi: 10.1016/j.isprsjprs.2016.04.011 |
[3] |
GUAN H, SUN X, SU Y, et al. UAV-lidar aids automatic intelligent powerline inspection[J]. International Journal of Electrical Power & Energy Systems, 2021, 130: 106987. |
[4] |
李靖, 钱建国, 王伟玺, 等. 基于机载激光点云的电力线自动提取方法[J]. 激光技术, 2021, 45(3): 362-366.LI J, QIAN J G, WANG W X, et al. Power line automatic extraction method based on airborne laser point cloud[J]. Laser Technology, 2021, 45(3): 362-366(in Chinese). |
[5] |
LIN T, LIU X. An intelligent recognition system for insulator string defects based on dimension correction and optimized faster R-CNN[J]. Electrical Engineering, 2021, 103(1): 541-549. doi: 10.1007/s00202-020-01099-z |
[6] |
陈亮. 基于高密度机载激光点云的输电线路杆塔信息提取[D]. 锦州: 辽宁工程技术大学, 2016: 37-54.CHEN L. Information extraction of transmission line tower based on high density airborne laser point cloud[D]. Jinzhou: Liaoning Technical University, 2016: 37-54(in Chinese). |
[7] |
王平华, 习晓环, 王成, 等. 机载激光雷达数据中电力线的快速提取[J]. 测绘科学, 2017, 42(2): 154-158.WANG P H, XI X H, WANG Ch, et al. Study on power line fast extraction based on airborne LiDAR data[J]. Science of Surveying and Mapping, 2017, 42(2): 154-158(in Chinese). |
[8] |
徐梁刚, 虢韬, 吴绍华, 等. 基于点云数据特征的电力线快速提取和重建[J]. 激光技术, 2020, 44(2): 244-249.XU L G, GUO T, WU Sh H, et al. Fast extraction and reconstruction of power line based on point cloud data features[J]. Laser Technology, 2020, 44(2): 244-249(in Chinese). |
[9] |
ORTEGA S, TRUJILLO A, SANTANA J M, et al. Characterization and modeling of power line corridor elements from LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 24-33. doi: 10.1016/j.isprsjprs.2019.03.021 |
[10] |
ZHANG R, YANG B, XIAO W, et al. Automatic extraction of high-voltage power transmission objects from UAV lidar point clouds[J]. Remote Sensing, 2019, 11(22): 2600. doi: 10.3390/rs11222600 |
[11] |
杨诗语. 基于点云的杆塔绝缘子分类方法研究[D]. 保定: 华北电力大学, 2016: 54-67.YANG Sh Y. Research on classification method of insulators based on point cloud[D]. Baoding: North China Electric Power University, 2020: 54-67(in Chinese). |
[12] |
ARASTOUNIA M, LICHTI D D. Automatic extraction of insulators from 3D LiDAR data of an electrical substation[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, Ⅱ-5/W2: 19-24. |
[13] |
SUN Y, CHEN X, JIAN X, et al. Identification and localization method of the insulator based on three-dimensional point cloud modeling[C]//2019 Chinese Control Conference (CCC). New York, USA: IEEE, 2019: 7051-7056. |
[14] |
刘经南, 张小红. 利用激光强度信息分类激光扫描测高数据[J]. 武汉大学学报(信息科学版), 2005, 30(3): 189-193.LIU J N, ZHANG X H. Classification of laser scanning altimetry data using laser intensity[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 189-193. |
[15] |
刘国栋, 刘佳, 刘浪. 一种基于机载LiDAR数据的山区道路提取方法[J]. 激光技术, 2022, 46(4): 466-473.LIU G D, LIU J, LIU L. A mountain road extraction method based on airborne LiDAR data[J]. Laser Technology, 2022, 46(4): 466-473(in Chinese). |
[16] |
王明军, 易芳, 李乐, 等. 自适应局部邻域特征点提取和匹配的点云配准[J]. 红外与激光工程, 2021, 51(5): 421-430.WANG M J, YI F, LI L, et al. Local neighborhood feature point extraction and matching for point cloud alignment[J]. Infrared and Laser Engineering, 2021, 51(5): 421-430(in Chinese). |
[17] |
林松, 田林亚, 毕继鑫, 等. 基于最优邻域局部熵的点云精简算法[J]. 测绘工程, 2021, 30(5): 12-17.LIN S, TIAN L Y, BI J X, et al. Point cloud simplification algorithm based on local entropy of optimal neighborhood[J]. Engineering of Surveying and Mapping, 2021, 30(5): 12-17(in Chinese). |
[18] |
XUAN W, HUA X, CHEN X, et al. A new progressive simplification method for point cloud using local entropy of normal angle[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(4): 581-589. |
[19] |
RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Confe-rence on Robotics and Automation. New York, USA: IEEE, 2009: 3212-3217. |
[20] |
DING Q, HE J. The detection of non-cooperative targets in space by using 3D point cloud[C]//2019 5th International Conference on Control, Automation and Robotics (ICCAR). New York, USA: IEEE, 2019: 545-549. |
[21] |
GAO G, QIAN K, MA X, et al. Object recognition and augmentation for wearable-assistive system using egocentric RGB-D sensor[C]//2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). New York, USA: IEEE, 2017: 775-780. |
[22] |
张晗, 康国华, 张琪, 等. 基于改进SAC-IA算法的激光点云粗配准[J]. 航天控制, 2019, 37(5): 67-74.ZHANG H, KANG G H, ZHANG Q, et al. Laser point cloud coarse registration based on improved SAC-IA algorithm[J]. Aerospace Control, 2019, 37(5): 67-74(in Chinese). |
[23] |
朱琛琛, 齐林, 帖云. 基于弧长密度的自动邻域半径鉴别FPFH提取算法[J]. 计算机工程, 2019, 45(10): 253-259.ZHU Ch Ch, QI L, TIE Y. Automatic neighborhood radius identification FPFH extraction algorithm based on arc length density[J]. Computer Engineering, 2019, 45(10): 253-259(in Chinese). |