[1] |
YANG J Q, WANG D Y, DONG D F, et al. Laser measurement based evaluation for orthogonal transformation calibration of robot pose[J]. Optics and Precision Engineering, 2018, 26(8): 1985-1993 (in Chinese). doi: 10.3788/OPE.20182608.1985 |
[2] |
YANG J Q, WANG D Y, DONG D F, et al. Estimation of pose errors with non-parametric constraint of manipulator in entire workspace domain[J]. Optics and Precision Engineering, 2018, 26(10): 2430-2437 (in Chinese). doi: 10.3788/OPE.20182610.2430 |
[3] |
WANG C Y, GAO X D, MA N, et al. Magneto-optical imaging detection of laser welding defects under multi-directional magnetic field excitation[J]. Laser Technology, 2020, 44(5): 592-599 (in Chinese). |
[4] |
DU L L, GAO X D, ZHANG N F, et al. Analysis on frequency domain characteristics of magneto-optical imaging of laser welding crack[J]. Laser Technology, 2020, 44(2): 226-231 (in Chinese). |
[5] |
ASH E A, NICHOLLS G. Super-resolution aperture scanning microscope[J]. Nature, 1972, 237(5357): 510-512. doi: 10.1038/237510a0 |
[6] |
LI W W, LIU Sh P, WANG Zh Y. Fast super-resolution fluorescence microscopy by compressed sensing[J]. Laser Technology, 2020, 44(2): 196-201 (in Chinese). |
[7] |
PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966 |
[8] |
FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759 |
[9] |
LIU Z, DURANT S, LEE H, et al. Far-field optical superlens[J]. Nano Letters, 2007, 7(2): 403-408. doi: 10.1021/nl062635n |
[10] |
LIU Z, LEE H, XIONG Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686. doi: 10.1126/science.1137368 |
[11] |
WANG Z B, GUO W, LI L, et al. Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2(1): 218. doi: 10.1038/ncomms1211 |
[12] |
HAO X, KUANG C F, LIU X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102. doi: 10.1063/1.3662010 |
[13] |
DARAFSHEH A, GUARDIOLA C, NIHALANI D, et al. Biological super-resolution imaging by using novel microsphere-embedded coverslips[J]. Proceedings of the SPIE, 2015, 9337: 933705. |
[14] |
LUO H, YU H B, WEN Y, et al. Enhanced high-quality super-resolution imaging in air using microsphere lens groups[J]. Optics Letters, 2020, 45(11): 2981-2984. doi: 10.1364/OL.393041 |
[15] |
YAN B, SONG Y, YANG X, et al. Unibody microscope objective tipped with a microsphere: Design, fabrication, and application in subwavelength imaging[J]. Applied Optics, 2020, 59(8): 2641-2648. doi: 10.1364/AO.386504 |
[16] |
ABBASIAN V, MORADI A. Microsphere-assisted super-resolved mueller matric microscopy[J]. Optics Letters, 2020, 45(15): 4336-4339. doi: 10.1364/OL.395735 |
[17] |
YANG S, WANG X Q, WANG J G, et al. Reduced distortion in high-index microsphere imaging by partial immersion[J]. Applied Optics, 2020, 57(27): 7818-7822. |
[18] |
BEN-ARYEH Y. Tunneling of evanescent waves into propagating waves[J]. Applied Physics, 2006, B84(1): 121-124. |
[19] |
BEN-ARYEH Y. Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films[J]. Applied Physics, 2012, B109: 165-170. |
[20] |
LIN Q W, WANG D Y, WANG Y X, et al. Super-resolution quantitative phase-contrast imaging by microsphere-based digital holographic microscopy[J]. Optical Engineering, 2017, 56(3): 034116. doi: 10.1117/1.OE.56.3.034116 |
[21] |
LIN Q W. Resolution improvement mechanism and experiment study on digital holographic microscopic imaging[D]. Beijing: Beijing University of technology, 2017: 75-84 (in Chinese). |
[22] |
GOODMAN J W. Introduction to Fourier optics[M]. 3th ed. New York, USA: IEEE, 2005: 34-37. |