[1] |
XU Q, XIE X M, ZHANG W, et al. The progress of semiconductor quantum dot based quantum emitter [J]. Laser Technology, 2020, 44(5): 575-586(in Chinese). |
[2] |
TANG X M, LI G Y. Development and prospect of laser altimetry satellite [J]. International Space, 2017(11): 13-18(in Chinese). |
[3] |
LUO H J, ZHOU R L, ZHANG Y T. Theoretical analysis of detection performance and range accuracy of photon ladar[J]. Laser Technology, 2014, 38(3): 411-416(in Chinese). |
[4] |
SHU R, HUANG G H, HOU L B, et al. Multi-channel photon counting three-dimensional imaging laser radar system using fiber array coupled Geiger-mode avalanche photodiode[J]. Proceedings of the SPIE, 2012, 8542: 1-10. |
[5] |
FANG J, SHE Ch, LIU J P. A denoising method based on photon counting lidar[J]. Ship Electronic Warfare, 2019, 42(4): 10-15(in Chinese). |
[6] |
OH M S, KONG H J, KIM T H, et al. Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode[J]. Review of Scientific Instruments, 2010, 81(3): 1-7. |
[7] |
FOUCHE D G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors[J]. Applied Optics, 2003, 42(27): 5388-5398. doi: 10.1364/AO.42.005388 |
[8] |
MILSTEIN A B, JIANG L A, LUU J X. Acquisition algorithm for direct-detection ladars with Geiger-mode avalanche photodiodes[J]. Applied Optics, 2008, 47(2): 296-311. doi: 10.1364/AO.47.000296 |
[9] |
HORAN K H, KEREKES J P. An automated statistical analysis approach to noise reduction for photon-counting lidar systems [C]//IEEE International Geoscience and Remote Sensing Symposium. NewYork, USA: IEEE, 2013: 4336-4339. |
[10] |
HERZFELD U C, MCDONALD B W, WALLIN B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4) : 2109-2125. doi: 10.1109/TGRS.2013.2258350 |
[11] |
LI K, ZHANG Y Sh, TONG X Ch, et al. Research on de-noising and filtering algorithm of single photon lidar data[J]. Navigation and Control, 2020, 19(1): 67-76(in Chinese). |
[12] |
LI M, GUO Y, YANG G, et al. A push-broom photon counting lidar point cloud filtering algorithm and its verification[J]. Science Technology and Engineering, 2017, 17(9): 53-58 (in Chinese). |
[13] |
XU Y T, LI G Y, QIU Ch X, et al. Single-photon laser data processing technology based on terrain correlation and least square curve fitting[J]. Infrared and Laser Engineering, 2019, 48(12): 148-157(in Chinese). |
[14] |
MCGILL M, MARKUS T, SCOTT V S, et al. The multiple altimeter beam experimental lidar (MABEL): An airborne simulator for the ICESat-2 mission[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 345-352. doi: 10.1175/JTECH-D-12-00076.1 |
[15] |
BRUNT K M, NEUMANN T A, AMUNDSON J M, et al. MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development[J]. Cryosphere, 2016, 10(4): 1707-1719. doi: 10.5194/tc-10-1707-2016 |
[16] |
YU F L. Research on ladar 3-D point cloud data processing methods based on single photon detection [D]. Harbin: Harbin University of Technology, 2016: 57-63(in Chinese). |
[17] |
ZHOU H, LI S, WANG L X, et al. Influence of noise on range error for satellite laser altimeter [J]. Infrared and Laser Engineering, 2015, 449(8): 2256 - 2261(in Chinese). |
[18] |
LIU Y, SUN Sh Y. Laser point cloud denoising based on principal component analysis and surface fitting[J]. Laser Technology, 2020, 44(4): 497-502(in Chinese). |
[19] |
WANG T, SHEN Y H, YAO J Q. Research on laser radar echo signal denoising based on wavelet threshold method[J]. Laser Technology, 2019, 43(1): 63-68(in Chinese). |
[20] |
LIU Zh P, YU Q Y, CHA J F. Rapid transformation from spatial rectangular coordinates to two common coordinates[J]. Science of Surveying and Mapping, 2015, 40(3): 8-11(in Chinese). |
[21] |
SANG J. Non-iteration method for inversion of space geodetic rectangular coordinates and geodetic coordinates[J]. Bulletin of Surveying and Mapping, 2000(5): 37-39(in Chinese). |