[1] |
WEI Y H, HUANG Q Ch. The toxicological effect of lead on the human health and its measures of preventing[J]. Studies of Trance Elements and Health, 2008(4): 62-64(in Chinese). |
[2] |
ZHANG Y, ZHANG T L, LI H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J]. Spectrochimica Acta, 2021, B181: 56-63. |
[3] |
PERSHIN S M, COLAO F, SPIZZICHINO V. Quantitative analysis of bronze samples by laser-induced breakdown spectroscopy (LIBS): A new approach, model, and experiment[J]. Laser Physics, 2006, 16(3): 455-467. doi: 10.1134/S1054660X06030066 |
[4] |
CHEN L, YOU L B, LUO X F, et al. Detection of Cd in table salt by LIBS technology[J]. Laser Technology, 2019, 43(1): 6-10(in Chinese). |
[5] |
GANG J, CHEN Y Q, YANG Y X, et al. Time-resolved high sensitivity signal detection of chrominum in aluminum alloy by laster-induced breakdown spectroscopy[J]. High Power Laser and Particle Beams, 2017, 29(9): 156-160(in Chinese). |
[6] |
HAN S K, PARK S H, AHN S K. Quantitative analysis of uranium in electrorecovery salt of pyroprocessing using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(5): 107-114. |
[7] |
XIU J Sh, DONG L L, LIN Sh, et al. Research progress of laser induced breakdown spectroscopy and other atomic spectroscopy in engine oildetection[J]. Laser Technology, 2018, 42(4): 505-510(in Chinese). |
[8] |
MONCAYO S, MANZOOR S, ROSALES J D, et al. Qualitative and quantitative analysis of milk for the detection ofadulteration by laser induced breakdown spectroscopy (LIBS)[J]. Food Chemistry, 2017, 232: 322-328. doi: 10.1016/j.foodchem.2017.04.017 |
[9] |
WANG Y, ZHAO N J, MA M J, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2013, 37(6): 808-811(in Chinese). |
[10] |
BAK M S, MCGANN B, CARTER C, et al. Determinants of laser-induced breakdown spectra in N2-O2 mixtures[J]. Journal of Phy-sics, 2016, D49: 125202. |
[11] |
QUE Zh B, LU W X, XIAO W, et al. LIBS analysis of heavy metal elements in suspended particulate matter in the Yangtze River[J]. Laser Journal, 2019, 40(5): 31-34 (in Chinese). |
[12] |
YANG W B, LI B C, HAN Y L, et al. Quantitative analysis of trace oxygen concentration in argon and nitrogen based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(10): 1011001(in Chinese). doi: 10.3788/CJL201744.1011001 |
[13] |
ZHANG L, WANG Zh, DING H B. Application of LIBS in diagnosis of aerosol[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(5): 338-346 (in Chinese). |
[14] |
KHUMAENI A, KURIHARA K, LIE Z S, et al. Analysis of sodium aerosol using transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy[J]. Current Applied Physics, 2014, 14(3): 47-54. |
[15] |
GUO W L, QIU R, WANG Ch F, et al. Detection of chromium in atmospheric aerosol by laser induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 745-751(in Chinese). |
[16] |
PHONGIKAROON W S. Elemental detection of cerium and gadolinium in aqueous aerosol using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2016, 70: 1700-1708. doi: 10.1177/0003702816648327 |
[17] |
HU X, ZHANG Y, DING Z H, et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China[J]. Atmospheric Environment, 2012, 57(1): 146-152. |
[18] |
HU Z J, SHI Y L, NIU H Y, et al. Synthetic musk fragrances and heavy metals in snow samples of Beijing urban area, China[J]. Atmospheric Research, 2012, 104: 302-305. |
[19] |
MA C H, XIAO L. Optimization method of quantitative analysis of mn in molten steel based on LIBS[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2016, 38(3): 9-13(in Chinese). |
[20] |
LIU Y, LU J D, LI P, et al. Application of internal standard method in the determination of carbon content in pulverized coal by laser induced breakdown spectroscopy[J]. Proceedings of Chinese Society for Electrical Engineering, 2009, 29(5): 1-4(in Chinese). |
[21] |
HUDDLESTONE R H, LEONARD S L. Plasma diagnostic techniques[M]. New York, USA: Academic Press, 1965: 201-264. |
[22] |
ASGILL M E, GROH S, NIEMAX K, et al. The use of multi-element aerosol particles for determining temporal variations in temperature and electron density in laser-induced plasmas in support of quantitative laser-induced breakdown spectroscopy[J]. Spectrochi-mica Acta, 2015, B109: 21-27. |