[1] |
AI L, YU J, HE Y, et al. High-dimensional indexing technologies for large scale content-based image retrieval: A review [J]. Journal of Zhejiang University(Svirnvr C), 2013, 14(7): 505-520. |
[2] |
LIU D Y, WANG G J, WU J, et al. Light field image compression method based on correlation of rendered views [J]. Laser Technology, 2019, 43(4): 551-556 (in Chinese). |
[3] |
WU Z, YU J. Vector quantization: A review [J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4):507-524. |
[4] |
HERVE J, MATTHIJS D, CORDELIA S. Product quantization for nearest neighbor search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 117-128. doi: 10.1109/TPAMI.2010.57 |
[5] |
MATSUI Y, UCHIDA Y, HERVE J. A survey of product quantization [J]. ITE Transactions on Media Technology and Applications, 2018, 6(1):2-10. doi: 10.3169/mta.6.2 |
[6] |
GE T, HE K, KE Q, et al. Optimized product quantization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4):744-755. doi: 10.1109/TPAMI.2013.240 |
[7] |
KALANTIDIS Y, AVRITHIS Y. Locally optimized product quantization for approximate nearest neighbor search[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2014: 1213-1220. |
[8] |
HEO J, LIN Z, YOON S. Distance encoded product quantization[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2014: 1241-1248. |
[9] |
NOROUZI M, FLEET D. Cartesian k-means[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2013: 3017-3024. |
[10] |
BABENKO A, LEMPITSKY V. Improving bilayer product quantization for billion-scale approximate nearest neighbors in high dimensions [EB/OL].[2019-10-10].https: //arxiv.org/abs/1404.1831. |
[11] |
KALANTIDIS Y, AVRITHIS Y. Locally optimized product quantization for approximate nearest neighbor search[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2014: 2329-2336. |
[12] |
JOHNSON J, DOUZE M, HERVE J. Billion-scale similarity search with gpus [J/OL].[2019-11-20].https: //ieeexplore.ieee.org/document/8733051. |
[13] |
MATSUI Y, OGAKI K, YAMASAKI T, et al. PQ k-means: Billionscale clustering for product-quantized code[C]// ACM Conference on Multimedia (MM). California, USA: ACM, 2017: 1-9. |
[14] |
JONATHAN B. Transform coding for fast approximate nearest neighbor search in high dimensions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2010: 1815-1822. |
[15] |
OZAN E, KIRANYAZ A, GABBOUJ M. K-subspaces quantization for approximate nearest neighbor search [J]. IEEE TKDE, 2016, 28(7): 1722-1733. |
[16] |
BABENKO A, LEMPITSKY V. Tree quantization for large-scale similarity search and classification[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2015: 4240-4248. |
[17] |
CHEN Y, GUAN T, WANG C. Approximate nearest neighbor search by residual vector quantization[J]. Sensors, 2010, 10(12): 11259-11273. doi: 10.3390/s101211259 |
[18] |
WANG J, ZHANG T. Composite quantization [J]. IEEE Transactions on PAMI, 2019. 41(6): 1308-1322. |
[19] |
AI L, YU J, WU Z, et al. Optimized residual vector quantization for efficient approximate nearest neighbor search [J]. Multimedia Systems, 2017, 23(2): 169-181. |
[20] |
LIU S, SHAO J, LU H. Generalized residual vector quantization and aggregating tree for large scale search [J]. IEEE Transactions on Multimedia, 2017, 19(8): 1785-1797. doi: 10.1109/TMM.2017.2692181 |
[21] |
WEI B, GUAN T, YU J. Projected residual vector quantization for ANN search [J]. IEEE Multimedia, 2014, 21(3):41-51. doi: 10.1109/MMUL.2013.65 |
[22] |
AI L F, LIU K, WU J. Enhanced residual vector quantization-based non-exhaustive retrieval for image visual features [J]. Journal of Hefei University, 2016, 26(1): 46-51(in Chinese). |
[23] |
GUAN T, HE Y, GAO J, et al. On-device mobile visual location recognition by integrating vision and inertial sensors [J]. IEEE Transactions on Multimedia, 2013, 15(7):1688-1699. doi: 10.1109/TMM.2013.2265674 |