[1] 赵佳乐, 王广龙, 周冰, 等. 基于边缘剔除的陆基高光谱图像噪声评估方法[J]. 激光技术, 2023, 47(1): 121-126.ZHAO J L, WANG G L, ZHOU B, et al. Noise evaluation method for land-based hyperspectral images based on edge elimination[J]. Laser Technology, 2023, 47(1): 121-126(in Chinese).
[2] 刘翠连, 陶于祥, 罗小波, 等. 混合卷积神经网络的高光谱图像分类方法[J]. 激光技术, 2022, 46(3): 355-361.LIU C L, TAO Y X, LUO X B, et al. Hyperspectral image classification based on hybrid convolutional neural network[J]. Laser Techno-logy, 2022, 46(3): 355-361(in Chinese).
[3] WU Z B, SUN J, ZHANG Y, et al. Recent developments in parallel and distributed computing for remotely sensed big data processing[J]. Proceedings of the IEEE, 2021, 109(8): 1282-1305. doi: 10.1109/JPROC.2021.3087029
[4] XU X S, GAO R X, QING Y, et al. Hyperspectral image mixed noise removal via tensor robust principal component analysis with tensor-ring decomposition[J]. International Journal of Remote Sensing, 2023, 44(5): 1556-1578. doi: 10.1080/01431161.2023.2187720
[5] SUN H, ZHENG X T, LU X Q. A supervised segmentation network for hyperspectral image classification[J]. IEEE Transactions on Ⅰ-mage Processing, 2021, 30(4): 2810-2825.
[6] RAO W Q, GAO L R, QU Y, et al. Siamese transformer network for hyperspectral image target detection[J]. IEEE Transactions on Geoscience And Remote Sensing 2022, 60(4): 1-19.
[7] DAO P D, MANTRIPRAGADA K, HE Y, et al. Improving hyperspectral image segmentation by applying inverse noise weighting and outlier removal for optimal scale selection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171(1): 348-366.
[8] ZHANG P, NING J. Hyperspectral image denoising via group sparsity regularized hybrid spatio-spectral total variation[J]. Remote Sensing, 2022, 14(10): 2348-2372. doi: 10.3390/rs14102348
[9] XIONG F C, ZHOU J, ZHAO Q L, et al. MAC-Net: Model-aided nonlocal neural network for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60(11): 1-14.
[10] MA F, HUO S, YANG F X. Graph-based logarithmic low-rank tensor decomposition for the fusion of remotely sensed images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14(4): 11271-11286.
[11] ZENG Z Y, HUANG T Z, CHEN Y, et al. Nonlocal block-term decomposition for hyperspectral image mixed noise removal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14(2): 5406-5420.
[12] WANG Y, PENG J J, ZHAO Q, et al. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 11(4): 1227-1243.
[13] XU C G, WU Z M, LI F, et al. Spectral-spatial joint sparsity unmixing of hyperspectral images based on framelet transform[J]. Infrared Physics & Technology, 2021, 112(5): 103564.
[14] KONG W F, SONG Y Y, LIU J. Hyperspectral image denoising via framelet transformation based three-modal tensor nuclear norm[J]. Remote Sensing, 2021, 13(19): 3829-3852.
[15] XU X, LI J, LI S T, et al. Curvelet transform domain-based sparse nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13(3): 4908-4924.
[16] PAN E, MA Y, MEI X G, et al. D2net: deep denoising network in frequency domain for hyperspectral image[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 10(3): 813-815.
[17] ZHANG H Y, HE W, ZHANG L P, et al. Hyperspectral image restoration using low-rank matrix recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(8): 4729-4743.
[18] HE W, ZHANG H Y, ZHANG L P, et al. Total-variation-regula-rized low-rank matrix factorization for hyperspectral image restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(1): 178-188.
[19] ZHUANG L N, NG M K, FU X Y. Hyperspectral image mixed noise removal using subspace representation and deep cnn image prior[J]. Remote Sensing, 2021, 13(20): 2071-2092.
[20] SIDOROV O, HARDEBERG J. Deep hyperspectral prior: single-image denoising, inpainting, super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. New York, USA: IEEE, 2019: 3844-3851.