[1] |
SWYT D A. Length and dimensional measurements at NIST[J]. Journal of research of the National Institute of Standards and Techno-logy, 2001, 106(1): 1-23. doi: 10.6028/jres.106.002 |
[2] |
SHI H Y, GUO T, WANG D, et al. Power line suspension point location method based on laser point cloud[J]. Laser Technology, 2020, 44(3): 364-370(in Chinese). |
[3] |
SUI Sh Ch, ZHU X Sh. Digital measurement technique for evaluating aircraft final assembly quality[J]. Scientia Sinica Technologica, 2020, 50: 1449-1460(in Chinese). doi: 10.1360/SST-2020-0049 |
[4] |
DENG Zh P, LI S G, HUANG X. Coordinate transformation uncertainty analysis and reduction using hybrid reference system for aircraft assembly[J]. Assembly Automation, 2018, 38(4): 487-496. doi: 10.1108/AA-08-2017-097 |
[5] |
MEI Z, MAROPOULOS P G. Review of the application of flexible, measurement-assisted assembly technology in aircraft manufacturing[J]. Proceedings of the Institution of Mechanical Engineers, 2014, B228(10): 1185-1197. |
[6] |
CHEN Z H, DU F Zh, TANG X Q. Research on uncertainty in mea-surement assisted alignment in aircraft assembly[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1568-1576. doi: 10.1016/j.cja.2013.07.037 |
[7] |
DENG Zh Ch, WU Zh Y, YANG J G. Point cloud uncertainty analysis for laser radar measurement system based on error ellipsoid model[J]. Optics and Lasers in Engineering, 2016, 79: 78-84. doi: 10.1016/j.optlaseng.2015.11.010 |
[8] |
COX M G, HARRIS P M. Measurement uncertainty and traceability[J]. Measurement Science and Technology, 2006, 17(3): 533-540. doi: 10.1088/0957-0233/17/3/S13 |
[9] |
ZHANG F M, QU X H. Fusion estimation of point sets from multiple stations of spherical coordinate instruments utilizing uncertainty estimation based on Monte Carlo[J]. Measurement Science Review, 2012, 12(2): 40-45. |
[10] |
REN Y, LIN J R, ZHU J G, et al. Coordinate transformation uncertainty analysis in large-scale metrology[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(9): 2380-2388. doi: 10.1109/TIM.2015.2403151 |
[11] |
ZHU J K, LI L J, LIN X Zh. Research on the measurement field planning of lidar measurement system[J]. Laser Technology, 2021, 45(1): 99-104(in Chinese). |
[12] |
BERGSTRÖM P, EDLUND O. Robust registration of point sets using iteratively reweighted least squares[J]. Computational Optimization and Applications, 2014, 58(3): 543-561. doi: 10.1007/s10589-014-9643-2 |
[13] |
WANG Q, HUANG P, LI J X, et al. Uncertainty evaluation and optimization of INS installation measurement using Monte Carlo method[J]. Assembly Automation, 2015, 35(3): 221-233. doi: 10.1108/AA-08-2014-070 |
[14] |
JIN Zh J, YU C J, LI J X, et al. Configuration analysis of the ERS points in large-volume metrology system[J]. Sensors, 2015, 15(9): 24397-24408. doi: 10.3390/s150924397 |
[15] |
PREDMORE C R. Bundle adjustment of multi-position measurements using the Mahalanobis distance[J]. Precision Engineering, 2010, 34(1): 113-123. doi: 10.1016/j.precisioneng.2009.05.003 |
[16] |
CALKINS J M. Quantifying coordinate uncertainty fields in coupled spatial measurement systems[D]. Virginia, USA: Virginia Polytechnic Institute and State University, 2002, 1: 48. |
[17] |
LIU Y, SUN Sh Y. Laser point cloud denoising based on principal component analysis and surface fitting[J]. Laser Technology, 2020, 44(4): 497-502(in Chinese). |
[18] |
CHEN H S, MA H Zh, CHU X N, et al. Anomaly detection and critical attributes identification for products with multiple operating conditions based on isolation forest[J]. Advanced Engineering Informatics, 2020, 46: 101139. doi: 10.1016/j.aei.2020.101139 |
[19] |
SUSTO G A, BEGHI A, MCLOONE S. Anomaly detection through on-line isolation Forest: An application to plasma etching[C] // Proceeding of the 28th Annual SEMI Advanced Semiconductor Ma-nufacturing Conference (ASMC). New York, USA: IEEE, 2017: 89-94. |
[20] |
LIU F T, TING K M, ZHOU Zh H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): 1-39. |
[21] |
CHEN W R, YUN Y H, WEN M, et al. Representative subset selection and outlier detection via isolation forest[J]. Analytical Methods, 2016, 8(39): 7225-7231. doi: 10.1039/C6AY01574C |
[22] |
KENNEDY J, EBERHART R. Particle swarm optimization[C] // Proceeding of IEEE International Conference on Neural Networks. New York, USA: IEEE, 1995: 1942-1948. |
[23] |
POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1): 33-57. doi: 10.1007/s11721-007-0002-0 |
[24] |
ALAM S, DOBBIE G, KOH Y S, et al. Research on particle swarm optimization based clustering: A systematic review of literature and techniques[J]. Swarm and Evolutionary Computation, 2014, 17: 1-13. doi: 10.1016/j.swevo.2014.02.001 |
[25] |
LI Y, XING Y, FANG C, et al. An experiment-based method for focused ion beam milling profile calculation and process design[J]. Sensors and Actuators, 2019, A286: 78-90. |
[26] |
LI Y, GOSÁLVEZ M A, PAL P, et al. Particle swarm optimization-based continuous cellular automaton for the simulation of deep reactive ion etching[J]. Journal of Micromechanics and Microengineering, 2015, 25(5): 055023. doi: 10.1088/0960-1317/25/5/055023 |
[27] |
CHEN S Q, ZHANG H Y, ZHAO Ch M, et al. Point cloud registration method based on particle swarm optimization algorithm improved by beetle antennae algorithm[J]. Laser Technology, 2020, 44(6): 678-683(in Chinese). |