[1] |
HADFIELD R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3(12): 696-705. doi: 10.1038/nphoton.2009.230 |
[2] |
EISAMAN M D, FAN J, MIGDALL A, et al. Invited review article: Single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7): 071101. doi: 10.1063/1.3610677 |
[3] |
HAMAMATSU. Photonic device electron tube devices and applied products[M]. Hamamatsu, Japan: Hamamatsu Photonics Electron Tube Division, 2014: 3. |
[4] |
NISHIMURA Y. New 50cm photo-detectors for hyper kamiokande[J]. Proceeding of Science, 2017, 303: 1596831. |
[5] |
ERTLEY C D, SIEGMUND O, HULL J, et al. Microchannel plate imaging detectors for high dynamic range applications[J]. IEEE Transactions on Nuclear Science, 2017, 64(7): 1774-1780. doi: 10.1109/TNS.2017.2652222 |
[6] |
LYASHENKO A V, ADAMS B W, AVILES M, et al. Performance of large area picosecond photo-detectors(LAPPDTM)[J]. Nuclear Instruments and Methods in Physics Reserach, 2020, A958: 162834. |
[7] |
LEHMANN A, BÖHM M, MIEHLING D, et al. Recent progress with microchannel-plate PMTs[J]. Nuclear Instruments and Methods in Physics Research, 2020, A952: 161821. |
[8] |
ACERBI F, GUNDACKER S. Understanding and simulating SiPMs[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 926: 16-35. |
[9] |
GHIONI M, GULINATTI A, RECH I, et al. Progress in silicon single-photon avalanche diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 852-862. doi: 10.1109/JSTQE.2007.902088 |
[10] |
ZHANG J, ITZLER M A, ZBINDEN H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication[J]. Light Science & Applications, 2015, 4(1): 381-393. |
[11] |
GHIONI M, ARMELLINI G, MAcCAGNANI P, et al. Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates[J]. IEEE Photonics Technology Letters, 2008, 20(6): 413-415. doi: 10.1109/LPT.2008.916926 |
[12] |
MA J, ZHOU M, YU Z F, et al. High-efficiency and low-jitter silicon single-photon avalanche diodes based on nanophotonic absorption enhancement[J]. Optica, 2015, 2(11): 974-979. doi: 10.1364/OPTICA.2.000974 |
[13] |
ZANG K, JIANG X, HUO Y. et al. Silicon single-photon avalanche diodes with nano-structured light trapping[J]. Nature Communications, 2017, 8(1): 58-61. doi: 10.1038/s41467-017-00102-9 |
[14] |
WARBURTON R E, INTERMITE G, MYRONOV M, et al. Ge-on-Si single-photon avalanche diode detectors: Design, modeling, fa-brication, and characterization at wavelengths 1310 and 1550nm[J]. IEEE Transactions on Electron Devices, 2013, 60(11): 3807-3813. doi: 10.1109/TED.2013.2282712 |
[15] |
MARTINE N J D, GEHL M, DEROSE C T, et al. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode[J]. Optics Express, 2017, 25(14): 16130-16139. doi: 10.1364/OE.25.016130 |
[16] |
VINES P, KUZMENKO K, KIRDODA J, et al. High performance planar germanium-on-silicon single-photon avalanche diode detectors[J]. Nature Communications, 2019, 10(1): 012002. |
[17] |
DUMAS D C, MILLAR R, KIRDODA J, et al. High-efficiency Ge-on-Si SPADs for short-wave infrared[C]// Optical Components and Materials ⅩⅥ. San Francisco, USA: SPIE, 2019: 1091424. |
[18] |
PENG B, ZHANG Y H, SHEN W Z. Infrared single photon detector based on optical up-converter at 1550nm[J]. Scientific Report, 2017, 7(1): 15341. doi: 10.1038/s41598-017-15613-0 |
[19] |
WIDARSSON M, HENRIKSSON M, MUTTER P, et al. High resolution and sensitivity up-conversion mid-infrared photon counting LiDAR[J]. Applied Optics, 2020, 59(8): 2365-2369. doi: 10.1364/AO.383907 |
[20] |
ITZLER M A, JIANG X D, ENTWISTLE M, et al. Advances in InGaAsP-based avalanche diode single photon detectors[J]. Journal of Modern Optics, 2011, 58(3/4): 174-200. |
[21] |
MENG X, TAN C H, DIMLER S, et al. 1550nm InGaAs/InAlAs single photon avalanche diode at room temperature[J]. Optics Express, 2014, 22(19): 174-200. |
[22] |
XIE S, ZHANG S, TAN C H. InGaAs/InAlAs avalanche photodiode with low dark current for high-speed operation[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1745-1748. doi: 10.1109/LPT.2015.2439153 |
[23] |
SEO H S, PARK S H, KWAK S, et al. A model for the InGaAs/InP single photon avalanche diodes with multiple-quantum wells in the charge multiplication region[J]. Journal of the Korean Physical Society, 2018, 72(2): 289-293. doi: 10.3938/jkps.72.289 |
[24] |
FANG Y Q, CHEN W, AO T H, et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550nm[J]. Review of Scientific Instruments, 2020, 91(8): 083102. doi: 10.1063/5.0014123 |
[25] |
SONG H Z. Avalanche photodiode focal plane arrays and their application in laser detection and ranging[J/OL]. [2018-11-05]. http://www.researchgate.net/publication/330-938883_Avalanche_photodiode_Focal_Plane_Arrays_and_Their_Application_to_Laser_Detection_and_Ranging. |
[26] |
GOLA A, ACERBI F, CAPASSO M, et al. NUV-sensitive silicon photomultiplier technologies developed at fondazione bruno kessler[J]. Sensors, 2019, 19(2): 308. doi: 10.3390/s19020308 |
[27] |
GUO L H, CHEN P, LI L L. Research progress on key technologies of photomultiplier tubes[J]. Vacuum Electronics, 2020, 347(4): 1-13(in Chinese). |
[28] |
PIEMONTE C, FERRI A, GOLA A, et al. Characterization of the first FBK high-density cell silicon photomultiplier technology[J]. IEEE Transactions on Electron Devices, 2013, 60(8): 2567-2573. doi: 10.1109/TED.2013.2266797 |
[29] |
ACERBI F, PATERNOSTER G, GOLA A, et al. High-density silicon photomultipliers: Performance and linearity evaluation for high efficiency and dynamic-range applications[J]. IEEE Journal of Quantum Electronics, 2018, 54(2): 4700107. |
[30] |
YOU L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 2020, 9(9): 2673-2692. doi: 10.1515/nanoph-2020-0186 |
[31] |
ROSFJORD K M, YANG J, DAULER E A, et al. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating[J]. Optics Express, 2006, 14(2): 527-534. doi: 10.1364/OPEX.14.000527 |
[32] |
ZHANG W J, YOU L X, LI H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550nm wavelength operational at compact cryocooler temperature[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(12): 31-40. |
[33] |
HU P, LI H, YOU L X, et al. Detecting single infrared photons toward optimal system detection efficiency[J]. Optics Express, 2020, 28(24): 36884-36891. doi: 10.1364/OE.410025 |
[34] |
MIAO J Sh, ZHANG L, WANG Ch, et al. Black phosphorus electronic and optoelectronic devices[J]. 2D Materials, 2019, 6(3): 32003. doi: 10.1088/2053-1583/ab1ebd |
[35] |
LIU Y, HUANG Y, DUAN X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748): 323-333. doi: 10.1038/s41586-019-1013-x |
[36] |
MIAO J Sh, HU W D, GUO N, et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios[J]. Small, 2015, 11(8): 936-942. doi: 10.1002/smll.201402312 |
[37] |
HUANG M, WANG M, CHEN C, et al. Broadband black-pho-sphorus photodetectors with high responsivity[J]. Advanced Materials, 2016, 28(18): 3481-3485. doi: 10.1002/adma.201506352 |
[38] |
MALEKI A, COUTTS D W, DOWNES J E, et al. Graphene photo-detector enhanced by plasmonic coupling[C]//Lasers and Electro-Optics Pacific Rim (CLEO-PR). New York, USA: IEEE, 2017: 1-4. |
[39] |
GAO A Y, LAI J W, WANG Y J, et al. Observation of ballistic a-valanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14(3): 217-222. doi: 10.1038/s41565-018-0348-z |
[40] |
LOPEZ-SANCHEZ O, DUMCENCO D, CHARBON E, et al. Avalanche photodiodes based on MoS2/Si heterojunctions[J/OL]. [2014-11-12]. https://arxiv.org/abs/1411.3232. |
[41] |
MIAO J Sh, WANG C. Avalanche photodetectors based on two-dimensional layered materials[J]. Nano Research, 2020, 14(6): 1878-1888. |
[42] |
WU P P, FU Y Q, YANG J. Graphene photodetectors based on surface plasmons[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700002(in Chinese). |