[1] VARGHESE I, PERI M D M, DUNBAR T, et al. Removal of nanoparticles with laser induced plasma[J]. Journal of Adhesion Science and Technology, 2008, 22(5/6): 651-674.
[2] LEI Zh L, TIAN Z, CHEN Y B, et al. Laser cleaning technology in the industrial field[J]. Progress in Laser and Optoelectronics, 2018, 55(3): 030005(in Chinese). doi: 10.3788/LOP55.030005
[3] LANG F, MOSBACHER M, LEIDERER P. Near field induced defects and influence of the liquid layer thickness in steam laser cleaning of silicon wafers[J]. Applied Physics, 2003, A77(1): 117-123. doi: 10.1007/s00339-003-2101-0
[4] HUANG Y, GUO D, LU X, et al. Mechanisms for nano particle removal in brush scrubber cleaning[J]. Applied Surface Science, 2011, 257(7): 3055-3062. doi: 10.1016/j.apsusc.2010.10.115
[5] CHEN J F, ZHANG Y K, KONG D J, et al. Research progress of short pulse laser cleaning fine particles[J]. Laser Technology, 2007, 31(3): 301-305(in Chinese).
[6] KEEDY R, DENGLER E, ARIESSOHN P, et al. Removal rates of explosive particles from a surface by impingement of a gas jet[J]. Aerosol Science and Technology, 2012, 46(2): 148-155. doi: 10.1080/02786826.2011.616920
[7] LUO J, LAI Q, LI Y, et al. Investigation on ultimate results and formation mechanism of the micro-nano particles removal by laser plasma[J]. Laser Physics Letters, 2020, 17(9): 096001. doi: 10.1088/1612-202X/aba360
[8] GRAF J, LUK'YANCHUK B S, MOSBACHER M, et al. Matrix laser cleaning: A new technique for the removal of nanometer sized particles from semiconductors[J]. Applied Physics, 2007, A88(2): 227-230. doi: 10.1007/s00339-007-4017-6
[9] HAN J, LUO L, ZHANG Y, et al. Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces[J]. Chin-ese Physics, 2016, B25(9): 095204.
[10] PARK J K, YOON J W, WHANG K H, et al. Removal of nanoparticles on silicon wafer using a self-channeled plasma filament[J]. Applied Physics, 2012, A108(2): 269-274. doi: 10.1007/s00339-012-7024-1
[11] YE Y Y, YUAN X D, XIANG X, et al. Study on laser shock wave cleaning SiO2 particles on the surface of K9 glass[J]. Laser Technology, 2011, 35(2): 245-248(in Chinese).
[12] LEE S H, KANG Y J, PARK J G, et al. Laser shock removal of nanoparticles from Si capping layer of extreme ultraviolet lithography masks[J]. Japanese Journal of Applied Physics, 2005, 44(7): 5560-5564.
[13] CETINKAYA C, VANDERWOOD R, ROWELL M. Nanoparticle removal from substrates with pulsed-laser induced plasma and shock waves[J]. Journal of Adhesion Science and Technology, 2002, 16(9): 1201-1214. doi: 10.1163/156856102320256846
[14] GU Q Q, FENG G, ZHOU G, et al. Regional effects and mechanisms of nanoparticle removal from Si substrate by laser plasma shock waves[J]. Applied Surface Science, 2018, 457(1): 604-615.
[15] CHEN X, BIAN B, SHEN Z, et al. Equations of laser-induced plasma shock wave motion in air[J]. Microwave and Optical Technology Letters, 2003, 38(1): 75-79. doi: 10.1002/mop.10975
[16] HARITH M A, PALLESCHI V, SALVETTI A, et al. Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography[J]. Optics Communications, 1989, 71(1): 76-80.
[17] KIM T H. Nanoscale particle removal using conventional and hybrid laser shockwave cleaning [D]. Boston, Massachusetts, USA: Northeastern University, 2010: 89-107.
[18] LIU Z F, ZHANG Z H, LU J F, et al. Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum[J]. Materials & Design, 2014, 64: 625-630.
[19] LIM H, JANG D, KIM D, et al. Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process[J]. Journal of Applied Physics, 2005, 97(5): 054903. doi: 10.1063/1.1857056
[20] LEVITAS V I, PANTOYA M L, CHAUHAN G, et al. Effect of the alumina shell on the melting temperature depression for aluminum nanoparticles[J]. Journal of Physical Chemistry, 2009, C113(32): 14088-14096.