[1] |
DOBROVINSKAYA E R, LYTVYNOV L A, PISHCHIK V. Sa-pphire: Material, manufacturing, applications[M].Beijing: Science Press, 2013:1-435(in Chinese). |
[2] |
MATSUMARU K, TAKATA A, ISHIZAKI K. Advanced thin dicing blade for sapphire substrate[J]. Science & Technology of Advanced Materials, 2005, 6(2):120-122. |
[3] |
RAO R, BRADBY J E, WILLIAMS J S. Patterning of silicon by indentation and chemical etching[J]. Applied Physics Letters, 2007, 91(12):2156-228. |
[4] |
EHRHARDT M, RACIUKAITIS G, GECYS P, et al. Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses[J]. Applied Physics, 2010, A101(2):399-404. |
[5] |
WANG J, NIINO H, YABE A. One-step microfabrication of fused silica by laser ablation of an organic solution[J]. Applied Physics, 1999, A68(1):111-113. |
[6] |
WANG J, NIINO H, YABE A. Micromachining of transparent mate- rials with super-heated liquid generated by multiphotonic absorption of organic molecule[J]. Applied Surface Science, 2000, 154/155:571-576. doi: 10.1016/S0169-4332(99)00462-6 |
[7] |
XIE X Z, CHE R H, WEI X, et al. Study on the technological rule of laser-induced backside wet etching sapphire substrates[J]. A-pplied Laser, 2015, 35(2):236-241 (in Chinese). |
[8] |
LIANG D Z, WANG M, DU CH L, et al. Research on microchannel of silica glass fabricated by laser-induced backside wet etching[J]. Laser Technology, 2017, 41(2):174-177(in Chinese). |
[9] |
ZIMMER K, BÖHME R, EHRHARDT M, et al. Mechanism of backside etching of transparent materials with nanosecond UV-lasers[J]. Applied Physics, 2010, A101(2):405-410. |
[10] |
SCHWALLER P, ZEHNDER S, ARX U V, et al. A novel model for the mechanism of laser-induced back side wet etching in aqueous cu solutions using ns pulses at 1064nm[J]. Physics Procedia, 2011, 12(1):188-194. |
[11] |
HUANG Z Q, HONG M H, DO T B M, et al. Laser etching of glass substrates by 1064nm laser irradiation[J]. Applied Physics, 2008, A93(1):159-163. |
[12] |
SATO T, KAWAGUCHI Y, KUROSAKI R. Variation in the etch rate of LIBWE fabricating deep microtrenches[J]. Journal of Laser Mocro Nanoengineering, 2012, 1(7):81-86. |
[13] |
XIE X Z, HUANG X D, JIANG W, et al. Three dimensional material removal model of laser-induced backside wet etching of sapphire substrate with CuSO4 solutions[J]. Optics & Laser Technology, 2017, 89:59-68. |
[14] |
YU J L, SUN X Y, HU Y W, et al. Study on ablation threshold of fused silica glass by femtosecond laser induced backside wet etching[J].Proceedings of the SPIE, 2018, 10964:1096442. |
[15] |
EHRHARDT M, LORENZ P, HAN B, et al. Laser-induced backside wet etching of SiO2 with a visible ultrashort laser pulse by using KMnO4 solution as an absorber liquid[J]. Journal of Laser Micro/Nanoengineering, 2018, 13(2):47-54. |
[16] |
TSVETKOV M Y, MINAEV N V, AKOVANTSEVA A A, et al. Thermoplasmonic laser-induced backside wet etching of sapphire[J]. Quantum Electronics, 2019, 49(2): 133-140. |
[17] |
TSVETKOV M Y, YUSUPOV V I, TIMASHEV P S, et al. On the role of supercritical water in laser-induced backside wet etching of glass[J]. Russian Journal of Physical Chemistry, 2017, B11(7): 1061-1069. |
[18] |
XIE X Z, HU M F, CHEN W F, et al. Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064nm laser irradiation[J]. Journal of Laser Micro Nanoengineering, 2013, 8(3):259-265. doi: 10.2961/jlmn.2013.03.0012 |
[19] |
LIU C H, HUO X P, LI Y L. Electroless copper plating using sodium hypophosphite as reductant[J]. Electroplating & Pollution Control, 2009, 29(6):33-35(in Chinese). |