[1] DU Y L, SUN F, YUAN G, et al. Current status of materials for three-dimensional printing[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2014, 29(1):20-24(in Chin-ese).
[2] LU B H, LI D C. Development of the additive manufacturing (3-D printing) technology[J]. Machine Building & Automation, 2013, 42(4):1-4(in Chinese).
[3] YANG J, LONG L U, LI Y P. Progress on the fabricating technology of EDM tool electrode[J]. Machine Tool & Hydraulics, 2007, 35(11):152-156(in Chinese).
[4] ZHAO J F, MA Zh Y, XIE D Q, et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(5):675-683(in Chinese).
[5] KOUTNY D, VRÁNA R, PALOUŠEK D. Dimensional accuracy of single beams of AlSi10Mg alloy and 316L stainless steel manufactured by SLM[C]//5th International Conference on Additive Technologies, 2014. Vienna, Austria: ICAT, 2014: 141-147.
[6] LIAO H H, LIANG M J, BAI P K, et al. Experiment research of selective laser melting of Ni-Fe metal power[J]. Special Casting & Nonferrous Alloys, 2016, 36(1):12-15(in Chinese).
[7] YADROITSEV I, KRAKHMALEV P, YADROITSAVA I. Hierarchical design principles of selective laser melting for high quality metallic objects[J]. Additive Manufacturing, 2014, 7:45-56.
[8] OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders:Processing, microstructure, and properties[J]. Progress in Materials Science, 2015, 74:401-477. doi: 10.1016/j.pmatsci.2015.03.002
[9] GU D D, SHEN Y F. Balling phenomena during direct laser sintering of multicomponent Cu-based metal powder[J]. Journal of Alloys & Compounds, 2007, 432(1/2):163-166.
[10] CAIH V, KNUTSE R, THIJS L, et al. Influence of build orientation on fatigue and fracture of SLM Ti6Al4V products[C]//Rapid Pro-duct Development Association of South Africa.Leuven, Belgium: Non-KU Leuven Association Publications, 2013: RapDasa.
[11] MORGAN R, SUTCLIFFE C J, O'NEILL W. Density analysis of direct metal laser re-melted 316L stainless steel cubic primitives[J]. Journal of Materials Science, 2004, 39(4):1195-1205. doi: 10.1023/B:JMSC.0000013875.62536.fa
[12] GU D D, SHEN Y F, FANG S, et al. Metallurgical mechanisms in direct laser sintering of Cu-CuSn-CuP mixed powder[J]. Journal of Alloys & Compounds, 2007, 438(1):184-189.
[13] LU J B, YANG Y Q, WANG D, et al. Analysis of affecting factors of overhanging surface quality by selective laser melting[J]. Laser Technology, 2011, 35(2):148-151(in Chinese).
[14] ZOU Y T, WEI Zh Y, DU J, et al. Effect and optimization of processing parameters on relative density of AlSi10Mg alloy parts by selective laser melting[J]. Applied Laser, 2016, 36(6):656-662(in Chinese).
[15] CHEN G X, QIN Q. Controlling and evaluation of precision of complex components produced by SLM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2010(2):102-105(in Chin-ese).
[16] SUN T T, YANG Y Q, SU X B, et al. Research of densification of 316L stainless steel powder in selective laser melting process[J]. Laser Technology, 2010, 34(4):443-446(in Chinese).
[17] YANG Y. Study on process and effective factors of stainless steel thin-wall parts manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(1):0103001(in Chinese). doi: 10.3788/CJL
[18] HU Q D, SUN F, LI H X, et al. Effects of scanning patterns on the defects and microstructure of 316 stainless steel fabricated by selective laser melting(SLM)[J]. Aeronautical Manufacturing Technology, 2016, 496(s1):124-127(in Chinese).
[19] WANG D, YANG Y Q, HUANG Y L, et al. Impact of inter-layer scan strategy on qualityof direct fabrication metal parts in SLM process[J]. Laser Technology, 2010, 34(4):447-451(in Chin-ese).
[20] WEN S, SHUAI L, WEI Q, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 2014, 214(11):2660-2667. doi: 10.1016/j.jmatprotec.2014.06.002