[1] |
GONG M G, ZHANG M Y, YUAN Y. Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):544-557. doi: 10.1109/TGRS.2015.2461653 |
[2] |
SUN K, GENG X R, JI L Y. A new sparsity-based band selection method for target detection of hyperspectral image[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2):329-333. doi: 10.1109/LGRS.2014.2337957 |
[3] |
HE Y L, LIU D Z, WANG J L, et al. Independent component analysis-based band selection for hyperspectral imagery[J]. Infrared and Laser Engineering, 2012, 41(3):818-824(in Chinese). |
[4] |
LIU C H, ZHAO C H, ZHANG L Y. A new method of hyperspectral remote sensing image dimensional reduction[J]. Journal of Image and Graphics, 2005, 10(2):218-222. |
[5] |
MEDJAHED S A, SAADI T A, BENYETTOU A, et al. Gray wolf optimizer for hyperspectral band selection[J]. Applied Soft Computing, 2016, 40:178-186. doi: 10.1016/j.asoc.2015.09.045 |
[6] |
SU H J, YONG B, DU Q. Hyperspectral band selection using improved firefly algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(1):68-72. doi: 10.1109/LGRS.2015.2497085 |
[7] |
FENG J, JIAO L, ZHANG X, et al. Hyperspectral band selection based on trivariate mutual information and clonal selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4092-4105. doi: 10.1109/TGRS.2013.2279591 |
[8] |
HOSSAIN M A, JIA X, PICKERING M. Subspace detection using a mutual information measure for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2):424-428. doi: 10.1109/LGRS.2013.2264471 |
[9] |
SU H J, DU Q, CHEN G S, et al. Optimized hyperspectral band selection using particle swarm optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2659-2670. doi: 10.1109/JSTARS.2014.2312539 |
[10] |
SUN W W, ZHANG L P, DU B, et al. Band selection using improved sparse subspace clustering for hyperspectral imagery classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2784-2797. doi: 10.1109/JSTARS.2015.2417156 |
[11] |
WANG L G, WEI F J. Band selection for hyperspectral imagery based on combination of genetic algorithm and ant colony algorithm [J]. Journal of Image and Graphics, 2013, 18(2):235-242(in Chinese). |
[12] |
GUO L, CHANG W W, FU C Y. Band selection of optimal for hyperspectral image fusion[J]. Journal of Astronautics, 2011, 32(2):374-379(in Chinese). |
[13] |
ZHAO C H, CHEN W H, YANG L. Research advances and analysis of hyperspectral remote sensing image band selection[J]. Journal of Natural Science of Heilongjiang University, 2007, 24(5):592-602(in Chinese). |
[14] |
SU H J, DU P J, SHENG Y H. Study on band selectional gorithms of hyperspectral image data[J]. Application Research of Computers, 2008, 25(4): 1093-1096(in Chinese). |
[15] |
CHEN S Y, LIU J X, DING Y. Study on fusion method of infrared and X-ray image based on wavelet transform[J]. Laser Technology, 2015, 39(5):685-688(in Chinese). |
[16] |
CHEN F, ZHANG W W, YU W J, et al. Fusion algorithm of EMCCD's low-light-level images based on wavelet transform[J]. Laser Technology, 2014, 38(2):155-160(in Chinese). |
[17] |
ZHOU Y, LI X R, ZHAO L Y. Modified linear-prediction based band selection for hyperspectral image[J]. Acta Optica Sinica, 2013, 33(8): 0828002(in Chinese). doi: 10.3788/AOS |
[18] |
GAO L R, GAO J W, LI J, et al. Multiple algorithm integration based on ant colony optimization for endmember extraction from hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2569-2582. doi: 10.1109/JSTARS.2014.2371615 |