[1] |
PU R L, GONG P. Hyperspectral remote sensing and application [M].Beijing: Higher Education Press, 2000:22-26 (in Chinese). |
[2] |
MEI F, ZHAO Ch H. A novel spectral similarity measurement kernel based anomaly detection method in hyperspectral imagery[J]. Acta Photonica Sinica, 2009,38(12):3165-3170(in Chinese). |
[3] |
ZHANG L Y, YAO P. Hyperspectral image low probability anomaly detection method research based on vertex component analysis[J]. Journal of Astronautics, 2007, 5(9):1262-1265(in Chinese). |
[4] |
XIAO X B. Research of anomaly detection algorithms of hyperspectral imagery[D].Hangzhou: Zhejiang University, 2012:2-7(in Chin-ese). |
[5] |
REED I S, YU X L. Adaptive multiple-band CFAR detection of an optical pattern with.unknown spectral distribution[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1990,38(10):1760-1770. |
[6] |
CHANG C I. Hyperspectral imaging: techniques for spectral detection and classification [M].New York,USA: Kluwer Academic,2003:256-268. |
[7] |
CHANG C I, CHIANG S S. Anomaly detection and classification for hyperspectral imagery[J].IEEE Transactions on Geoscience Remote Sensing,2002,40(6):1314-1325. |
[8] |
KWON H, NASRABADI N M.Kernel spectral matched filter for hyperspectral imagery [J].International Journal of Computer Vision,2007,71(2):127-141. |
[9] |
GREEN A A, BERMAN M, SWITZER P, et al. A transformation for ordering multispectral data in terms.of image quality with implications for noise removal[J].IEEE Transactions on Geoscience and Remote Sensing,1988,26(1):65-74. |
[10] |
GU H Y, LI H T, YANG J H. The remote sensing image fusion method based on minimum noise fraction [J]. Remote Sensing For Land Resources, 2007, 13(2):53-56(in Chinese). |
[11] |
WEI X F, LIU X. Research of image segmentation based on 2-D maximum entropy optimal threshold [J].Laser Technology, 2013, 37(4):519-522(in Chinese). |