[1] |
林承达, 谢良毅, 韩晶, 等. 基于激光点云的农田玉米种植株数数目识别[J]. 激光技术, 2022, 46(2): 220-225.LIN Ch D, XIE L Y, HAN J, et al. Recognition of the number of corn plants in farmland based on laser point cloud[J]. Laser Technology, 2022, 46(2): 220-225(in Chinese). |
[2] |
ZHU X, SKIDMORE A K, DARVISHZADEH R, et al. Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 43-50. doi: 10.1016/j.jag.2017.09.004 |
[3] |
黄帆, 李维涛, 侯阳飞, 等. 激光点云的隧道数据处理及形变分析[J]. 测绘科学, 2019, 44(5): 132-137. doi: 10.16251/j.cnki.1009-2307.2019.05.020HUANG F, LI W T, HOU Y F, et al. Tuneldata processing and deformation analysis study based on laser point cloud[J]. Science of Surveying and Mapping, 2019, 44(5): 132-137(in Chinese). doi: 10.16251/j.cnki.1009-2307.2019.05.020 |
[4] |
LAI X D, YANG J R, LI Y X, et al. A building extraction approach based on the fusion of LiDAR point cloud and elevation map texture features[J]. Remote Sensing, 2019, 11(14): 1636. doi: 10.3390/rs11141636 |
[5] |
PAN Y, DONG Y Q, WANG D L, et al. Three-dimensional reconstruction of structural surface model of heritage bridges using UAV-based photogrammetric point clouds[J]. Remote Sensing, 2019, 11(10): 1204. doi: 10.3390/rs11101204 |
[6] |
胡海瑛, 惠振阳, 李娜. 基于多基元特征向量融合的机载LiDAR点云分类[J]. 中国激光, 2020, 47(8): 0810002.HU H Y, HUI Zh Y, LI N. Airborne LiDAR point cloud classification based on multiple-entity eigenvetor fusion[J]. Chinese Journal of Lasers, 2020, 47(8): 0810002(in Chinese). |
[7] |
薛豆豆, 程英蕾, 释小松, 等. 综合布料滤波与改进随机森林的点云分类算法[J]. 激光与光电子学进展, 2020, 57(22): 221017.XUE D D, CHENG Y L, SHI X S, et al. Point clouds classification algorithm based on cloth filtering algorithm improved random forest[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221017(in Chinese). |
[8] |
XU Y Sh, YE Zh, YAO W, et al. Classification of LiDAR point clouds using supervoxel-based detrended feature and perception-weighted graphical model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 13: 72-88. |
[9] |
WEINMANN M, JUTZI B, HINZ S, et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 286-304. doi: 10.1016/j.isprsjprs.2015.01.016 |
[10] |
CHEN M L, LIU X J, ZHANG X Y, et al. Building extraction from terrestrial laser scanning data with density of projected points on polar grid and adaptive threshold[J]. Remote Sensing, 2021, 13(21): 4392. doi: 10.3390/rs13214392 |
[11] |
CHE E, OLSEN M J. Fast ground filtering for TLS data via scanline density analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129: 226-240. |
[12] |
史文中, 李必军, 李清泉. 基于投影点密度的车载激光扫描距离图像分割方法[J]. 测绘学报, 2005, 34(2): 95-100.SHI W Zh, LI B J, LI Q Q. A method for segmentation of range image captured by vehicle-borne laser scanning based on the density of projected points[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(2): 95-100(in Chinese). |
[13] |
SUN H, WANG G X, LIN H, et al. Retrieval and accuracy assessment of tree and stand parameters for Chinese fir plantation using terrestrial laser scanning[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1993-1997. |
[14] |
CHENG X L, CHENG X J, LI Q, et al. Automatic registration of terrestrial and airborne point clouds using building outline features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 628-638. |
[15] |
LIU K Q, WANG W G, THARMARASA R, et al. Dynamic vehicle detection with sparse point clouds based on PE-CPD[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1964-1977. |
[16] |
DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality based scale selection in 3D lidar point clouds[J]. ISPRS-International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2011, 38(5): 97-102. |
[17] |
李健, 姚亮. 融合多特征深度学习的地面激光点云语义分割[J]. 测绘科学, 2021, 46(3): 133-139.LI J, YAO L. Ground laser point cloud semantic segmentation based on multi-feature deep learning[J]. Science of Surveying and Mapping, 2021, 46(3): 133-139(in Chinese). |
[18] |
ATIK M E, DURAN Z, SEKER D Z. Machine learning-based supervised classification of point clouds using multiscale geometric features[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 187. |
[19] |
CHEN M L, WAN Y C, WANG M W, et al. Automatic stem detection in terrestrial laser scanning data with distance-adaptive search radius[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2968-2979. |
[20] |
CHEN M L, PAN J P, XU J Zh. Classification of terrestrial laser scanning data with density-adaptive geometric features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1795-1799. |
[21] |
HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3d. net: A new large-scale point cloud classification benchmark[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1-W1: 91-98. |
[22] |
DONG Zh, LIANG F X, YANG B Sh, et al. Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 327-342. |
[23] |
ZHANG W M, QI J B, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501. |
[24] |
张志刚, 孙立才, 汪沛. 基于激光扫描技术的行人检测方法研究[J]. 计算机科学, 2016, 43(7): 328-331.ZHANG Zh G, SUN L C, WANG P. Research on pedestrian detection method based on laser scanning[J]. Computer Science, 2016, 43(7): 328-331(in Chinese). |