[1] |
YU D M, CHENG F D, GUO X Y, et al. Application of helicopter laser scanning 3-D imaging technology in transmisshion lines[J]. High Voltage Engineering, 2011, 37(3):711-717(in Chinese). |
[2] |
KIM H B, SOHN G. Point-based classification of power line corridor scene using random forests[J]. Photogrammetric Engineering and Remote Sensing, 2013, 13(9):821-833. |
[3] |
GUO B, HUANG X F, ZHANG F, et al. Points cloud classification using jointboost combined with contextual information for feature reduction[J]. Acta Geodaeticaet Cartographica Sinica, 2013, 42(5):715-721(in Chinese). |
[4] |
HOOPER B. Vegetation management takes to the air[J]. Transmi-ssion & Distribution World, 2003, 55(9):TD-67-CW. |
[5] |
AHMAD J, MALIK A S, XIA L K, et al. Vegetation encroachment monitoring for transmission lines right-of-ways: A survey[J]. Electric Power Systems Research, 2013, 95(1):339-352. |
[6] |
LIN X G, ZHANG J X. 3-D power line reconstruction from airborne lidar point cloud of overhead electric power transmission corridors[J]. Acta Geodaeticaet Cartographica Sinica, 2016, 45(3):347-353(in Chinese). |
[7] |
GUO B, HUANG X F, LI Q Q, et al. A stochastic geometry method for pylon reconstruction from airborne lidar data[J]. Remote Sensing, 2016, 8(3):243. doi: 10.3390/rs8030243 |
[8] |
LI Q Q, CHENG Zh P, HU Q W. A model-driven approach for 3-D modeling of pylon from airborne lidar data[J]. Remote Sensing, 2015, 7(9):11501-11524. doi: 10.3390/rs70911501 |
[9] |
YU J, MU Ch, FENG Y, et al. Powerlins extraction techniques from airborne lidar data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11):1275-1279(in Chinese). |
[10] |
MAI X M, CHEN Ch, PENG X Y, et al. 3-D visualization technique of transmission line corridors: system design and implementation[J]. Electric Power, 2015, 48(2):98-103(in Chinese). |
[11] |
TANG F F, RUAN Zh M, LIU X. Research of filtering method for urban airborne LIDAR data[J]. Laser Technology, 2011, 35(4):527-530(in Chinese). |
[12] |
WANG L. Research on organization and viusalization of massive 3D laser point cloud data[D]. Beijing: Beijing University of Technology, 2016: 3-7(in Chinese). |
[13] |
CHEN Ch, WANG K, XU W X, et al. Real-time visualizing of massive vehicle-borne laser scanning point clouds[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1163-1168(in Chinese). |
[14] |
ZHI X D, LIN Z J, SU G Z, et al. Research on organization of airborn lidar points cloud based on improved auadtree algorithm[J]. Computer Engineering and Application, 2010, 46(9):71-74(in Chinese). |
[15] |
HUANG X F, TAO Ch, JIANG W Sh, et al. Real time render large amount of lidar point clouds data[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11):38-41(in Chinese). |
[16] |
YAN L, HU X B, XIE H. Data management and visualization of mobile laser scanning point cloud[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1131-1136(in Chin-ese). |
[17] |
QIU Y. The research on the real-time rendering of three-dimensional laser scanning point cloud based on out-of-core octree[D]. Tianjin: Tianjin Normal University, 2017: 20-22(in Chinese). |
[18] |
YANG Zh F, WAN G, LI F, et al. Research on rendering of ma-ssive point cloud based on multi-resolution LOD[J]. Geospatial Information, 2016, 14(10):22-25(in Chinese). |
[19] |
WANG L, GUO Q J, JIANG H. A new LOD method based on an improved octree index structure for the visualization of massive point cloud[J]. Computer Engineering & Software, 2016, 37(3):114-117(in Chinese). |
[20] |
RIZKI P N M, PARK J, OH S, et al. STR-octree indexing method for processing LiDAR data[C]//2015 IEEE Sensors.New York, USA: IEEE, 2016: 1-4. |
[21] |
XIE H, WU B Y, ZHAO Zh. A novel organization method of ma-ssive point cloud[J]. Remote Sensing Information, 2013, 28(6):26-32(in Chinese). |
[22] |
ELSEBERG J, BORRMANN D, NVCHTER A. One billion points in the cloud-an octree for efficient processing of 3-D laser scans[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2013, 76(1):76-88. |
[23] |
LIANG Y L. Research on massive mehicular point cloud data organization and rapid visualization technology[D]. Beijing: Capital Normal University, 2012: 14-20(in Chinese). |
[24] |
KREYLOS O, BAWDEN G W, KELLOGG L H. Immersive Visua-lization and Analysis of LiDAR Data[C]// International Symposium on Advances in Visual Computing. New York, USA: Springer-Verlag, 2008: 846-855. |