[1]
|
LIN W L, TSAI H K, LEE S C, et al. Identification of infrared absorption peaks of amorphous silicon-carbon alloy by thermal annealing[J]. Applied Physics Letters, 1987, 51(25): 2112-2114. doi: 10.1063/1.98963 |
[2]
|
BACH T, HUCK N, WEZEL F, et al. 70 vs 120 W thulium∶yttrium-aluminium-garnet 2 μm continuous-wave laser for the treatment of benign prostatic hyperplasia: A systematic ex-vivo evaluation[J]. BJU international, 2010, 106(3): 368-372. doi: 10.1111/j.1464-410X.2009.09059.x |
[3]
|
RICCHIAZZI P, YANG S, GAUTIER C, et al. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth's atmosphere[J]. Bulletin of the American Meteorological Society, 1998, 79(10): 2101-2114. doi: 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2 |
[4]
|
PELC J S, MA L, PHILLIPS C, et al. Long-wavelength-pumped upconversion single-photon detector at 1550 nm: Performance and noise analysis[J]. Optics Express, 2011, 19(22): 21445-21456. doi: 10.1364/OE.19.021445 |
[5]
|
CANEAU C, SRIVASTAVA A, DENTAI A, et al. Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 μm[J]. Electronics Letters, 1985, 18(21): 815-817. |
[6]
|
CHIU T H, TSANG W T, DITZENBERGER J A, et al. Room-temperature operation of InGaAsSb/AlGaSb double heterostructure lasers near 2.2 μm prepared by molecular beam epitaxy[J]. Applied Phy-sics Letters, 1986, 49(17): 1051-1052. doi: 10.1063/1.97471 |
[7]
|
CHOI H K, EGLASH S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with low threshold current density[J]. Applied Physics Letters, 1992, 61(10): 1154-1156. doi: 10.1063/1.107630 |
[8]
|
GARBUZOV D Z, MARTINELLI R U, LEE H, et al. 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes[J]. Applied Physics Letters, 1997, 70(22): 2931-2933. doi: 10.1063/1.118747 |
[9]
|
RATTUNDE M, MERMELSTEIN C, SCHMITZ J, et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0 μm diode lasers[J]. Applied Physics Letters, 2002, 80(22): 4085-4087. doi: 10.1063/1.1481979 |
[10]
|
RATTUNDE M, SCHMITZ J, KAUFEL G, et al. GaSb-based 2. X μm quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8): 081115. doi: 10.1063/1.2178506 |
[11]
|
LI Z G, LIU G J, YOU M H, et al. 2.0 μm room temperature CW operation of InGaAsSb/AlGaAsSb laser with asymmetric waveguide structure[J]. Laser Physics, 2009, 19(6): 1230-1233. doi: 10.1134/S1054660X09060085 |
[12]
|
XIE S, YANG C, HUANG S, et al. 2.1 μm InGaSb quantum well lasers exhibiting the maximum conversion efficiency of 27.5% with digitally grown AlGaAsSb barriers and gradient layers[J]. Superla-ttices and Microstructures, 2019, 130: 339-345. doi: 10.1016/j.spmi.2019.05.002 |
[13]
|
XIE S W, ZHANG Y, YANG C A, et al. High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars[J]. Chinese Physics, 2019, B28(1): 014208. |
[14]
|
CHEN Y, YANG C, WANG T, et al. High-power, high-efficiency gasb-based laser with compositionally linearly graded AlGaAsSb layer[J]. Applied Sciences, 2023, 13(9): 5506. doi: 10.3390/app13095506 |
[15]
|
SHI J, YANG C, WANG T, et al. Ultra-stable and low-divergence high-power antimonide light emitters with on-chip mode filter[J]. Applied Physics Letters, 2023, 123(12): 121105. doi: 10.1063/5.0167510 |
[16]
|
WANG T, YANG C, CHEN Y, et al. High power GaSb-based superluminescent diode with cascade cavity suppression waveguide geometry and ultra-low antireflection coating[J]. Applied Physics Letters, 2023, 123(2): 021102. doi: 10.1063/5.0157235 |
[17]
|
吕国瑞, 卞进田, 温佳起, 等. 窄谱宽中红外激光技术研究进展[J]. 激光技术, 2023, 47(6): 742-750. doi: 10.7510/jgjs.issn.1001-3806.2023.06.003
LÜ G R, BIAN J T, WEN J Q, et al. Research progress of narrow-linewidth mid-infrared laser[J]. Laser Technology, 2023, 47(6): 742-750(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2023.06.003 |
[18]
|
LIAU Z L, FLANDERS D C, WALPOLE J N, et al. A novel GaInAsP/InP distributed feedback laser[J]. Applied Physics Letters, 1985, 46(3): 221-223. doi: 10.1063/1.95689 |
[19]
|
BLEUEL T, BROCKHAUS M, KOETH J, et al. GaInAsSb/AlGaAsSb: Single-mode DFB lasers for gas sensing in the 2 μm wavelength range[J]. Proceedings of the SPIE, 1999, 3858: 372907. |
[20]
|
SALHI A, BARAT D, ROMANINI D, et al. Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room temperature for application in tunable diode laser absorption spectroscopy[J]. Applied Optics, 2006, 45(20): 4957-4965. doi: 10.1364/AO.45.004957 |
[21]
|
BELAHSENE S, NAEHLE L, FISCHER M, et al. Laser diodes for gas sensing emitting at 3.06 μm at room temperature[J]. IEEE Photonics Technology Letters, 2010, 22(15): 1084-1086. doi: 10.1109/LPT.2010.2049989 |
[22]
|
HARING K, VIHERIÄLÄ J, VILJANEN M R, et al. Laterally-coupled distributed feedback InGaSb/GaSb diode lasers fabricated by nanoimprint lithography[J]. Electronics Letters, 2010, 46(16): 1146-1147. doi: 10.1049/el.2010.1533 |
[23]
|
VIHERIÄLÄ J, HARING K, SUOMALAINEN S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography[J]. IEEE Photonics Technology Letters, 2016, 28(11): 1233-1236. doi: 10.1109/LPT.2016.2519044 |
[24]
|
YANG C A, ZHANG Y, LIAO Y P, et al. 2 μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chinese Physics, 2016, B25(2): 024204. |
[25]
|
YANG C A, XIE S W, ZHANG Y, et al. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm[J]. Applied Physics Letters, 2019, 114(2): 021102. doi: 10.1063/1.5080266 |
[26]
|
YU H, YANG C, CHEN Y, et al. Robust design of mid-infrared GaSb-based single-mode laser diode fabricated by standard photolithography with socketed ridge-waveguide modulation[J]. Optics Express, 2023, 31(21): 34011-34020. doi: 10.1364/OE.498962 |
[27]
|
WANG T, YANG C, CHEN Y, et al. Coupling performance enhancement of gasb-based single-transverse-mode lasers with reduced beam divergence obtained via near field modulation[J]. Photonics, 2022, 9(12): 942. doi: 10.3390/photonics9120942 |
[28]
|
WANG T, YANG C, CHEN Y, et al. Promotion of specific single-transverse-mode beam characteristics for gasb-based narrow ridge waveguide lasers via customized parameter design[J]. Nanoscale Research Letters, 2022, 17(1): 116. doi: 10.1186/s11671-022-03758-5 |
[29]
|
杨成奥, 张一, 尚金铭, 等. 2~4μm中红外锑化物半导体激光器研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201075.
YANG Ch A, ZHANG Y, SHANG J M, et al. Research progress of 2~4 μm mid-infrared antimonide semiconductor lasers (invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201075(in Chinese). |
[30]
|
张一, 张宇, 杨成奥, 等. 3~4 μm锑化物带间级联激光器研究进展(特邀)[J]. 红外与激光工程, 2018, 47(10): 1003003.
ZHANG Y, ZHANG Y, YANG Ch A, et al. Research progress of 3~4 μm antimonide interband cascade laser (invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003003(in Chinese). |
[31]
|
YANG R Q. Infrared laser based on intersubband transitions in quantum wells[J]. Superlattices and Microstructures, 1995, 17(1): 77-83. doi: 10.1006/spmi.1995.1017 |
[32]
|
KIM M, CANEDY C L, BEWLEY W W, et al. Interband cascade laser emitting at λ=3.75 μm in continuous wave above room temperature[J]. Applied Physics Letters, 2008, 92(19): 191110. doi: 10.1063/1.2930685 |
[33]
|
VURGAFTMAN I, BEWLEY W W, CANEDY C L, et al. Reba-lancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nature Communications, 2011, 2(1): 585. doi: 10.1038/ncomms1595 |
[34]
|
CANEDY C, ABELL J, MERRITT C, et al. High-power CW performance of 7-stage interband cascade lasers[C]// 2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications. New York, USA: IEEE Press, 2014: 126-132. |
[35]
|
ZHANG Y, SHAO F H, YANG C A, et al. Room-temperature continuous-wave interband cascade laser emitting at 3.45 μm[J]. Chinese Physics, 2018, B27(12): 124207. |
[36]
|
ZHANG Y, SHAO F H, YANG C A, et al. Wavelength tuning of type-Ⅱ "W" quantum well of interband cascade laser[J]. Proceedings of the SPIE, 2018, 10052: 2521757. |
[37]
|
尚金铭, 张宇, 杨成奥, 等. GaSb基光抽运半导体碟片激光器的研究进展(特邀)[J]. 红外与激光工程, 2018, 47(10): 1003004.
SHANG J M, ZHANG Y, YANG Ch A, et al. Research progress of GaSb based optically pumped semiconductor disk lasers(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003004(in Chinese). |
[38]
|
CERUTTI L, GARNACHE A, GENTY F, et al. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1 μm[J]. Electronics Letters, 2003, 39(3): 290-292. doi: 10.1049/el:20030192 |
[39]
|
HOPKINS J M, HEMPLER N, RÖSENER B, et al. High-power, (AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letters, 2008, 33(2): 201-203. doi: 10.1364/OL.33.000201 |
[40]
|
HOLL P, RATTUNDE M, ADLER S, et al. GaSb-based 2.0 μm SDL with 17 W output power at 20 ℃[J]. Electronics Letters, 2016, 52(21): 1794-1795. doi: 10.1049/el.2016.2412 |
[41]
|
SHANG J M, FENG J, YANG C A, et al. High quality 2 μm GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy[J]. Chinese Physics, 2019, B28(3): 034202. |
[42]
|
YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062. doi: 10.1103/PhysRevLett.58.2059 |
[43]
|
JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. doi: 10.1103/PhysRevLett.58.2486 |
[44]
|
IMADA M, NODA S, CHUTINAN A, et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure[J]. Applied Physics Letters, 1999, 75(3): 316-318. doi: 10.1063/1.124361 |
[45]
|
MEIER M, MEKIS A, DODABALAPUR A, et al. Laser action from two-dimensional distributed feedback in photonic crystals[J]. Applied Physics Letters, 1999, 74(1): 7-9. doi: 10.1063/1.123116 |
[46]
|
YOSHIDA M, de ZOYSA M, ISHIZAKI K, et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J]. Nature Materials, 2019, 18(2): 121-128. doi: 10.1038/s41563-018-0242-y |
[47]
|
YANG L, LI G, GAO X, et al. Topological-cavity surface-emitting laser[J]. Nature Photonics, 2022, 16(4): 279-283. doi: 10.1038/s41566-022-00972-6 |
[48]
|
MA J, ZHOU T, TANG M, et al. Room-temperature continuous-wave topological Dirac-vortex microcavity lasers on silicon[J]. Light: Science & Applications, 2023, 12(1): 255. |