-
所提出的二十四倍频方案如图 1所示。本方案中所用到的器件有连续激光器、射频(radio frequency, RF)信号源、直流源、马赫-曾德尔调制器、偏振控制器、半导体光纤放大器、相位移相器(phase shifter, PS)、布喇格光栅滤波器、光学衰减器(optical attenuator, OA)以及光电探测器。
Figure 1. Schematic diagram of microwave millimeter wave signal generation based on parallel MZM structure and SOA
设抽运激光器发出的光信号和微波源发出的电信号分别为:
$ {E_{{\rm{in}}}}\left( t \right) = {E_0}{\rm{exp}}(j{\omega _0}t){\rm{ }} $
(1) $ V\left( t \right) = {V_{{\rm{RF}}}}{\rm{sin}}({\omega _{{\rm{RF}}}}t) $
(2) 式中,E0是光场幅度,ω0是抽运光波频率,VRF是射频信号的幅度,ωRF是射频信号的角频率。
入射进两个子调制器的直流偏置电压用VDC, i(i=1, 2)表示,则由直流偏置所引入的相位差ϕi=πVDC, i/Vπ(i=1, 2),其中Vπ是MZM的半波电压。
激光器发出的光波被一个马赫-曾德尔集成调制器所调制,该集成调制器由嵌入到MZM上下两臂的两个子调制器MZM-a和MZM-b构成。射入两个子调制器的射频信号相位相差π/2,每个子调制器的上下两臂的射频信号相位差为0。令MZM-a和MZM-b都偏置在MATP,即ϕ1=ϕ2=0,则经过并联MZM调制后的信号可以表示为:
$ \begin{array}{l} {E_{{\rm{out}}}}(t) = \frac{1}{4}{E_0}{\rm{exp}}\left( {{\rm{j}}{\omega _0}t} \right)\left\{ {{\rm{exp}}\left[ {{\rm{j}}m{\rm{sin}}\left( {{\omega _{{\rm{RF}}}}t} \right)} \right]} \right. + \\ {\rm{exp}}\left[ { - {\rm{j}}m{\rm{sin}}\left( {{\omega _{{\rm{RF}}}}t} \right)} \right]{\rm{exp}}\left( { - {\rm{j}}{\phi _1}} \right) + \exp \left[ {{\rm{j}}m{\rm{sin}}\left( {{\omega _{{\rm{RF}}}}t} \right. + } \right.\\ \left. {\left. {\left. {\Delta \phi } \right)} \right] + \exp \left[ { - {\rm{j}}m{\rm{cos}}\left( {{\omega _{{\rm{RF}}}}t + \Delta \phi } \right)} \right]\exp \left( { - {\rm{j}}{\phi _2}} \right)} \right\} = \\ \frac{1}{4}{E_0}{\rm{exp}}\left( {{\rm{j}}{\omega _0}t} \right)\sum\limits_{n = - \infty }^\infty {{{\rm{J}}_\mathit{n}}\left( m \right)\exp \left( {{\rm{j}}n{\omega _{{\rm{RF}}}}t} \right)} \left\{ {1 + {{\left( { - 1} \right)}^n} \cdot } \right.\\ \exp \left( { - {\rm{j}}{\phi _1}} \right) + \exp \left( {{\rm{j}}\mathit{n}\Delta \phi } \right) + {\left( { - 1} \right)^n}\exp \left( { - {\rm{j}}{\phi _2}} \right) \cdot \\ \left. {\exp \left( {{\rm{j}}\mathit{n}\Delta \phi } \right)} \right\} = \frac{1}{4}{E_0}{\rm{exp}}\left( {{\rm{j}}{\omega _0}t} \right)\sum\limits_{n = - \infty }^\infty {{{\rm{J}}_\mathit{n}}\left( m \right) \cdot } \\ \exp \left( {{\rm{j}}n{\omega _{{\rm{RF}}}}t} \right)\left\{ {1 + \exp \left( {{\rm{j}}\mathit{n}\Delta \phi } \right) + {{\left( { - 1} \right)}^n} \cdot } \right.\\ \left. {\left[ {\exp \left( { - {\rm{j}}{\phi _1}} \right) + \exp \left( { - {\rm{j}}{\phi _2}} \right)\exp \left( {{\rm{j}}\mathit{n}\Delta \phi } \right)} \right]} \right\}{\rm{ = }}\\ \frac{1}{4}{E_0}{\rm{exp}}\left( {{\rm{j}}{\omega _0}t} \right)\sum\limits_{n = - \infty }^\infty {{{\rm{J}}_\mathit{n}}\left( m \right)\exp \left( {{\rm{j}}n{\omega _{{\rm{RF}}}}t} \right) \cdot } \\ \left\{ {\left[ {1 + \exp \left( {{\rm{j}}\mathit{n}\Delta \phi } \right)} \right]\left[ {1 + {{\left( { - 1} \right)}^n}} \right]} \right\} \end{array} $
(3) 当$ \Delta \phi = \frac{{\rm{ \mathsf{ π} }}}{2}$时,(3)式可化为:
$ \begin{array}{l} {E_{{\rm{out}}}}(t) = \frac{1}{4}{E_0}{\rm{exp}}\left( {{\rm{j}}{\omega _0}t} \right)\sum\limits_{n = - \infty }^\infty {{{\rm{J}}_\mathit{n}}\left( m \right) \cdot } \\ \exp \left( {{\rm{j}}n{\omega _{{\rm{RF}}}}t} \right)\left\{ {\left( {{\rm{1 + }}{{\rm{j}}^n}} \right)\left[ {1 + {{\left( { - 1} \right)}^n}} \right]} \right\} \end{array} $
(4) 式中,Jn(m)为n阶贝塞尔函数。
由(1)式~(4)式可知:(1)当n=4k+1或n=4k+3(k为整数,下同)时,1+(-1)n=0,±1阶和3阶边带信号被抑制;(2)当n=4k+2时,1+jn=0,±2阶边带信号被抑制;(3)当n=4k时,Eout(t)≠0,载波和±4阶边带信号被保留,更高阶的信号由于功率过低,可以不用考虑。
令J0(m)=0,可抑制载波,如图 2所示。当m=2.405时,J0(m)=0。
当满足频率稳定、相位相关且偏振态相同的两个光波信号在非线性介质中传播时,会由于非线性极化作用发生混频效应,从而产生两个新的波长,这种现象被称为FWM。设抽运光频率为ω0,信号光频率为ω1,则经FWM效应后生成的两个谐波分量的频率分别为(2ω0-ω1)和(2ω1-ω0),如图 3所示。
诸如高非线性光纤(high nonlinear optical fiber, HNLF)和SOA等非线性器件都可以发生FWM、交叉增益调制(cross gain modulation, XGM)、交叉相位调制(cross phase modulation, XPM)等非线性效应。FWM的产生要求各信号光的相位匹配,当各信号光在光纤的零色散附近传输时,材料色散对相位失配的影响很小,因而较容易满足相位匹配条件,容易产生四波混频效应。本方案中,从DP-MZM中产生的光信号满足频率稳定、相位相关等条件,此时,其它的非线性效应的影响很小,可以忽略不计。因此,将采用SOA进行FWM。
如前面所述,生成的±4阶边带信号在经过FWM后将产生±12阶边带信号,分别为ωidler, 1=2ω0-ω1=-12和ωidler, 2=2ω1-ω0=+12。经两级FBG滤除±4阶边带信号后,只剩下±12阶边带信号,最后经PD拍频便可生成纯净的二十四倍频信号。
基于并联调制器的高倍频毫米波信号生成
Generation of high frequency millimeter wave signal based on parallel modulators
-
摘要: 为了获得更高频率的信号,采用了一种基于并联马赫-曾德尔调制器(MZM)和半导体光纤四波混频效应的二十四倍频光生毫米波方案。本振信号被并联MZM调制后可以获得高纯度的±4阶边带,在四波混频效应下,又可以生成±12阶边带,用级联的布喇格光栅滤波器滤除±4阶边带,经光电探测器拍频便可生成二十四倍频信号。结果表明,当输入本振信号为5GHz时,生成的120GHz高频微波毫米波信号射频杂散抑制比为22dB,频谱纯度很高,且具有很好的可调谐性。该研究为高频微波毫米波信号的生成提供了更高的倍频方法。Abstract: In order to get higher frequency signal, a 24-tupling frequency microwave millimeter-wave signal generation scheme based on parallel Mach-Zehnder modulators (MZM) and semiconductor optical amplifier (SOA) four-wave mixing effect was presented and simulated.The local oscillator signal was modulated by parallel MZM to obtain high-purity ±4 sidebands.Under the four-wave mixing effect, the ±12 sidebands were generated.The ±4 sideband was filtered by cascaded Bragg grating filters.After the beat frequency of photoelectric detector, 24-tupling frequency signal was generated.The results show that, when input local oscillator signal is 5GHz, radio frequency spurious rejection ratio of the generated 120GHz high frequency microwave millimeter wave signal is 22dB.The spectrum purity is high, and the tunability is good.This study provides a high frequency doubling method for the generation of high frequency microwave and millimeter wave signal.
-
-
[1] XING J N, HE H X, CHI H. Advances in microwave signal frequency measurement based on photonics[J]. Laser Technology, 2018, 42(3):295-299(in Chinese). [2] ZOU G J, ZHANG B F, TENG Y Ch. Study on microwave signal generation and transmission of photoelectric oscillator on satellite[J]. Laser Technology, 2017, 41(4):582-585(in Chinese). [3] CHEN Y, LIU B, WANG T L, et al. Optical study of high performance concentrated local oscillator signal on stars[J]. Aerospace Shanghai, 2016, 33(6):38-43(in Chinese). [4] WANG Y Q, LI P, LI J, et al.Millimeter-wave signal generation with tunable frequency multiplication factor by employing UFBG-based acousto-optic tunable filter[J]. IEEE Photonics Journal, 2017, 9(11):1231-1236. [5] HE G, QU P F, SUN L J. Application status of microwave photon technology[J]. Semiconductor Optoelectronics, 2017, 38(5):627-632(in Chinese). [6] LIN C T, SHI P T, XUE W Q, et al. Optical millimeter wave signal generation using frequency quadrupling technique and no optical filtering[J]. IEEE Photonics Technology Letters, 2008, 20(12):1027-1029. doi: 10.1109/LPT.2008.923739 [7] XU Z W, FU H Y, CAI Zh P. Microwave frequency multiplication based on cascaded fiber ring microwave photonic filters[J]. Journal of Optoelectronics·Laser, 2014, 25(1):65-69(in Chinese). [8] JIANG W J, LIN C T, HUANG H S, et al. 60GHz photonic vector signal generation employing frequency quadrupling scheme for radio-over-fiber link[C]//Optical Fiber Communication-Incudes Post Deadline Papers, 2009. New York, USA: IEEE, 2009: 1-3. [9] ZHANG J, CHEN H W, WANG T L. A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression[J]. Photonics Technology Letters, 2007, 19(14):1041-1135. [10] WEI Zh H, WANG R, FANG T, et al. Sextupling tunable mm-wave signal generation based on intensity modulation and Brillouin effect[J]. Journal of Optoelectronics·Laser, 2012, 23(10):1890-1894(in Chinese). [11] GAO Y Sh, WEN A J, YU Q W, et al. Microwave genereation with photonic frequency sextupling based on cascaded modulators[J]. IEEE Photonics Technology Letters, 2014, 26(12):1199-1202. doi: 10.1109/LPT.2014.2318772 [12] SHI P M, YU S, LI Z K, et al. A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator[J]. Optics Communications, 2010, 283(19):3667-3672. doi: 10.1016/j.optcom.2010.05.021 [13] LIN Ch T, SHIN P T, JIANG W J, et al. A continuously tunable and filterless optical millimeter-wave generation via frequency octupling[J]. Optics Express, 2009, 17(22):3692-3697. [14] SHANG J M, WANG D B, LIU Y J, et al. Research on the controllable frequency octupling technology for generation optical millimeter-wave by external modulator[J]. Acta Optical Sinica, 2014, 34(5):506003(in Chinese). doi: 10.3788/AOS [15] ZHANG Y, PAN S. Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a dual-parallel Mach-Zehnder modulator[C]//Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications. New York, USA: IEEE, 2012: 1-4. [16] LI W Zh, YAO J P. Microwave generation based on optical domain microwave frequency octupling[J]. IEEE Photonics Technology Letters, 2010, 22(1):24-26. doi: 10.1109/LPT.2009.2035332 [17] MA J X, XIN X J, XU J, et al. Optical millimeter wave generated by octupling the frequency of the local oscillator[J]. Journal of Optical Networking, 2008, 7(10):837-845. doi: 10.1364/JON.7.000837 [18] PREM A, CHAKRAPANI A. A phase modulation scheme for millimeter wave generation based on frequency octupling using LiNbO3 Mach-Zehnder modulator[J]. International Journal of Engineering & Technology, 2017, 9(4):3197-3202. [19] ZHANG W, WEN A J, GAO Y Sh, et al. Filterless frequency-octupling mm-wave generation by cascading sagnac loop and DPMZM[J]. Optics and Laser Technology, 2017, 97:229-233. doi: 10.1016/j.optlastec.2017.07.007 [20] SHIH P T, CHEN J, LIN C T, et al. Optical millimeter-wave signal generation via frequency 12-tupling[J]. Journal of Lightwave Technology, 2009, 28(1):71-78. [21] ZHU Z H, ZHAO Sh H, ZHENG W Z, et al. Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators[J]. Applied Optics, 2015, 54(32):9432-9440. doi: 10.1364/AO.54.009432 [22] ZHU Z, ZHAO S, LI Y, et al. A novel scheme for high-quality 120GHz optical millimeter-wave generation without optical filter[J]. Optics & Laser Technology, 2015, 65:29-35. [23] CHEN X G, LIU Zh X, JIANG Ch, et al. A filterless optical millimeter-wave generation based on frequency 16-tupling[C]//Asia Communications and Photonics Conference 2013. Washington DC, USA: Optical Society of America, 2013: AF3B.4. [24] YING X Y, XU T F, LI J, et al. A 16-tupling signal generation millimeter wave technique based on cascaded dual-parallel MZM[J]. Journal of Optoelectronics·Laser, 2017, 28(11):1213-1217(in Chinese). [25] PENG J Sh, WEN L Ch. Generation of 24-frequency millimeter-wave signal based on cascaded modulator[J]. Semiconductor Optoelectronics, 2016, 37(5):758-762(in Chinese).