-
在柱坐标下,参考文献[3]中给出了贝塞尔-高斯光束在源平面的(z=0)的电场强度分布表达式,在光束的中心加一个障碍物即高斯吸收函数[17],则其在源平面的电场强度分布函数可以表示为:
$ \begin{array}{*{20}{c}} {{E_0}\left( {\rho , \varphi , 0} \right) = {{\rm{J}}_{\rm{m}}}\left( {\frac{R}{{{w_0}^2}}\rho } \right)\exp \left( { - \frac{{{\rho ^2}}}{{{w_0}^2}}} \right) \times }\\ {\exp \left( { - {\rm{i}}m\varphi } \right)\left[ {1 - \exp \left( { - \frac{{{\rho ^2}}}{{R_0^2}}} \right)} \right]} \end{array} $
(1) 源平面上交叉谱密度函数可以表示为:
$ \begin{array}{*{20}{c}} {W\left( {{\rho _1},{\rho _2},0} \right) = {{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _1}} \right){{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _2}} \right) \times }\\ {\exp \left[ { - \frac{{\rho _1^2 + \rho _2^2}}{{{w_0}^2}} - {\rm{i}}m\left( {{\varphi _1} - {\varphi _2}} \right)} \right] + {{\rm{J}}_m}\left( {\frac{R}{{{w_0}^2}}{\rho _1}} \right) \times }\\ {{{\rm{J}}_m}\left( {\frac{R}{{{w_0}^2}}{\rho _2}} \right)\exp \left[ { - \frac{{\rho _1^2 + \rho _2^2}}{{{w_1}^2}} - {\rm{i}}m\left( {{\varphi _1} - {\varphi _2}} \right)} \right] - }\\ {{{\rm{J}}_m}\left( {\frac{R}{{{w_0}^2}}{\rho _1}} \right){{\rm{J}}_m}\left( {\frac{R}{{{w_0}^2}}{\rho _2}} \right) \times }\\ {\exp \left[ { - \frac{{\rho _1^2}}{{w_0^2}} - \frac{{\rho _2^2}}{{w_1^2}} - {\rm{i}}m\left( {{\varphi _1} - {\varphi _2}} \right)} \right] - }\\ {{{\rm{J}}_m}\left( {\frac{R}{{{w_0}^2}}{\rho _1}} \right){{\rm{J}}_m}\left( {\frac{R}{{{w_0}^2}}{\rho _2}} \right) \times }\\ {\exp \left[ { - \frac{{\rho _1^2}}{{w_1^2}} - \frac{{\rho _2^2}}{{w_0^2}} - {\rm{i}}m\left( {{\varphi _1} - {\varphi _2}} \right)} \right]} \end{array} $
(2) 式中,Jm表示m阶第1类贝塞函数,w0为基模高斯光束的束腰宽度,参量R=kw02sinφ,φ表示在傍轴上理想贝塞尔场的锥角,$k = \frac{{2{\rm{ \mathit{ π} }}}}{\lambda } $表示波数,λ为光束的波长,R0为遮挡物半径,ρi=(ρxi, ρyi)=(ρicosφi, ρisinφi)表示源平面中任意的两个点,φ表示沿z方向的角,$w_1^2 = \frac{{R_0^2 + w_0^2}}{{w_0^2R_0^2}} $。在(2)式中取:
$ \begin{array}{*{20}{c}} {{W_1}\left( {{\rho _1},{\rho _2},0} \right) = {{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _1}} \right){{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _2}} \right) \times }\\ {\exp \left[ { - \frac{{\rho _1^2 + \rho _2^2}}{{{w_0}^2}} - {\rm{i}}m\left( {{\varphi _1} - {\varphi _2}} \right)} \right],}\\ {{W_2}\left( {{\rho _1},{\rho _2},0} \right) = {{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _1}} \right){{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _2}} \right) \times }\\ {\exp \left[ { - \frac{{\rho _1^2 + \rho _2^2}}{{{w_1}^2}} - {\rm{i}}m\left( {{\varphi _1} - {\varphi _2}} \right)} \right],}\\ {{W_3}\left( {{\rho _1},{\rho _2},0} \right) = {{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _1}} \right){{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _2}} \right) \times }\\ {\exp \left[ { - \frac{{\rho _1^2}}{{w_0^2}} - \frac{{\rho _2^2}}{{w_1^2}} - {\rm{i}}m\left( {{\varphi _1} - {\varphi _2}} \right)} \right],}\\ {{W_4}\left( {{\rho _1},{\rho _2},0} \right) = {{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _1}} \right){{\rm{J}}_\mathit{m}}\left( {\frac{R}{{{w_0}^2}}{\rho _2}} \right) \times }\\ {\exp \left[ { - \frac{{\rho _1^2}}{{w_1^2}} - \frac{{\rho _2^2}}{{w_0^2}} - {\rm{i}}m\left( {{\varphi _1} - {\varphi _2}} \right)} \right]} \end{array} $
(3) 根据参考文献[5],可得W1(ρ1, ρ2, 0)的表达式。为简单起见,引入新的积分变量ρ=(ρ1+ρ2)/2, ρd=ρ1-ρ2,可得: ${W_{1\theta \theta \mathit{'}}}\left( {{\rho _1},{\rho _2},0} \right) \Rightarrow {W_{1\theta \theta \mathit{'}}}\left( {\rho ,{\rho _{\rm{d}}},0} \right) $。
$ \begin{array}{*{20}{c}} {{W_{1\theta \theta '}}\left( {\rho , {\rho _{\rm{d}}}, 0} \right) = }\\ {\exp \left[ { - \frac{{2{\rho ^2}}}{{w_0^2}} - \frac{{\rho _{\rm{d}}^2}}{{2w_0^2}} + {\rm{i}}\left( {{\mathit{\boldsymbol{Q}}_ - } \cdot \rho + \frac{{{\mathit{\boldsymbol{Q}}_ + } \cdot {\rho _{\rm{d}}}}}{2}} \right)} \right]} \end{array} $
(4) 式中,2维矢量${\mathit{\boldsymbol{Q}}_ \pm } = \frac{R}{{w_0^2}}\left( {\cos \theta \pm \cos \theta \mathit{', }{\rm{sin}}\theta \pm {\rm{sin}}\theta \mathit{'}} \right) $,θ和θ′是积分公式与贝塞尔函数之间转换引入的无关变量。
激光从源平面(z=0)出发,在湍流大气中传输时,参考文献[14]中给出了光束在z平面的表达式,在此引入新的积分变量$\mathit{\boldsymbol{r = }}\frac{{{\mathit{\boldsymbol{r}}_1} + {\mathit{\boldsymbol{r}}_2}}}{2}, {\mathit{\boldsymbol{r}}_{\rm{d}}} = {\mathit{\boldsymbol{r}}_1} - {\mathit{\boldsymbol{r}}_2} $, 其中,r1和r2表示接收面上任意的两个点,垂直于光束的传播方向, 得:
$ \begin{array}{*{20}{c}} {\left\langle {{W_{1\theta \theta '}}\left( {\mathit{\boldsymbol{r}}, {\mathit{\boldsymbol{r}}_{\rm{d}}}, z} \right)} \right\rangle = }\\ {{{\left( {\frac{1}{{2{\rm{ \mathit{ π} }}}}} \right)}^2}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{{\rm{d}}^2}\rho '{{\rm{d}}^2}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}} } } } \times }\\ {\left\langle {{W_{1\theta \theta '}}\left( {\rho ', {\mathit{\boldsymbol{r}}_{\rm{d}}} + \frac{z}{k}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}, 0} \right)} \right\rangle \times }\\ {\exp \left[ { - {\rm{i}}\mathit{\boldsymbol{r}} \cdot {\mathit{\boldsymbol{\kappa }}_{\rm{d}}} + {\rm{i}}\rho ' \cdot {\mathit{\boldsymbol{\kappa }}_{\rm{d}}} - } \right.}\\ {\left. {H\left( {{\mathit{\boldsymbol{r}}_{\rm{d}}}, {\mathit{\boldsymbol{r}}_{\rm{d}}} + \frac{z}{k}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}, z} \right)} \right]} \end{array} $
(5) 式中, κd是空间频域的位置矢量, H表示湍流影响。对无关变量ρ′进行积分并整合得到:
$ \begin{array}{*{20}{c}} {\left\langle {{W_{1\theta \theta '}}\left( {\mathit{\boldsymbol{r}}, {\mathit{\boldsymbol{r}}_{\rm{d}}}, z} \right)} \right\rangle = \frac{{w_0^2}}{{8{\rm{ \mathit{ π} }}}}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\exp \left( { - {\rm{i}}\mathit{\boldsymbol{r}} \cdot {\mathit{\boldsymbol{\kappa }}_{\rm{d}}}} \right) \times } } }\\ {\exp \left[ { - \frac{{w_0^2\mathit{\boldsymbol{Q}}_ - ^2}}{8} - \frac{1}{{2w_0^2}}\mathit{\boldsymbol{r}}_{\rm{d}}^2 + \frac{{{\rm{i}}{\mathit{\boldsymbol{Q}}_ + }}}{2} \cdot {\mathit{\boldsymbol{r}}_{\rm{d}}} - } \right.}\\ {\left. {H\left( {{\mathit{\boldsymbol{r}}_{\rm{d}}}, {\mathit{\boldsymbol{r}}_{\rm{d}}} + \frac{z}{k}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}, z} \right)} \right] \times }\\ {\exp \left[ { - \left( {\frac{{w_0^2}}{8} + \frac{{{z^2}}}{{2w_0^2{k^2}}}} \right)\mathit{\boldsymbol{\kappa }}_{\rm{d}}^2 + } \right.}\\ {\left. {\left( {\frac{{{\rm{i}}{\mathit{\boldsymbol{Q}}_ + }z}}{{2k}} - \frac{{w_0^2{\mathit{\boldsymbol{Q}}_ - }}}{4} - \frac{z}{{kw_0^2}} \cdot {\mathit{\boldsymbol{r}}_{\rm{d}}}} \right) \cdot {\mathit{\boldsymbol{\kappa }}_{\rm{d}}}} \right]{{\rm{d}}^2}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}} \end{array} $
(6) 受遮挡贝塞尔-高斯光束在大气湍流中传输时,其维格纳分布函数可以表示为:
$ \begin{array}{*{20}{c}} {h\left( {\mathit{\boldsymbol{r}}, \varphi , z} \right) = }\\ {\int_0^{2{\rm{ \mathit{ π} }}} {\int_0^{2{\rm{ \mathit{ π} }}} {{\rm{d}}\theta {\rm{d}}\theta '\exp \left[ { - {\rm{i}}m\left( {\theta - \theta '} \right)} \right]{h_{\theta \theta '}}\left( {\mathit{\boldsymbol{r}}, \varphi , z} \right)} } } \end{array} $
(7) 其中,
$ \begin{array}{*{20}{c}} {{h_{\theta \theta '}}\left( {\mathit{\boldsymbol{r}}, \varphi , z} \right) = {{\left( {\frac{k}{{2{\rm{ \mathit{ π} }}}}} \right)}^2}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{W_{\theta \theta '}}\left( {\mathit{\boldsymbol{r}}, {\mathit{\boldsymbol{r}}_{\rm{d}}}, z} \right)} } \times }\\ {\exp \left( { - {\rm{i}}k{\mathit{\boldsymbol{r}}_{\rm{d}}} \cdot \varphi } \right){{\rm{d}}^2}{\mathit{\boldsymbol{r}}_{\rm{d}}} = }\\ {D\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {{{\rm{d}}^2}{\mathit{\boldsymbol{r}}_{\rm{d}}}{{\rm{d}}^2}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}}{\mathit{\Lambda }_{\theta \theta '}}\left( {{\mathit{\boldsymbol{r}}_{\rm{d}}}, {\mathit{\boldsymbol{r}}_{\rm{d}}}, z} \right)} } } } \times }\\ {\exp \left( { - {\rm{i}}k{\mathit{\boldsymbol{r}}_{\rm{d}}} \cdot \varphi - {\rm{i}}{\mathit{\boldsymbol{\kappa }}_{\rm{d}}} \cdot \mathit{\boldsymbol{r}}} \right)} \end{array} $
(8) 式中, $D = \frac{{{k^2}w_0^2}}{{8{{\rm{ \mathit{ π} }}^3}}} $,φ=(φx, φy)表示这个矢量沿z方向的角,kφx, kφy分别表示沿x轴和y轴方向的波矢量分量, Λθθ′是引入的一个函数,是W1θθ′对ρ′进行积分后取得的一个函数。
由于维格纳分布函数的性质及(n1+n1+m1+m2)阶矩定义[10],可得:
$ \begin{array}{*{20}{c}} {{{\left\langle {{x^2} + {y^2}} \right\rangle }_1} = {f_1}\left[ {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_m}\left( {{\gamma _1}} \right){g_1} + } \right.}\\ {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_{m + 1}}\left( {{\gamma _1}} \right)\left( {\frac{{{R^2}{z^2}}}{{4\omega _0^4{k^2}}}} \right) + \exp \left( { - {\gamma _1}} \right) \times }\\ {{{\rm{I}}_{m - 1}}\left( {{\gamma _1}} \right)\left( {\frac{{{R^2}{z^2}}}{{4\omega _0^4{k^2}}}} \right) + \exp \left( { - {\gamma _1}} \right){{\rm{I}}_{m + 1}}\left( {{\gamma _1}} \right)\left( {\frac{{{R^2}}}{{16}}} \right) + }\\ {\left. {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_{m - 1}}\left( {{\gamma _1}} \right)\left( {\frac{{{R^2}}}{{16}}} \right)} \right], }\\ {{{\left\langle {x{\varphi _x} + y{\varphi _y}} \right\rangle }_1} = {f_1}\left[ {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_m}\left( {{\gamma _1}} \right){j_1} + } \right.}\\ {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_{m + 1}}\left( {{\gamma _1}} \right)\left( {\frac{{{R^2}z}}{{4\omega _0^4{k^2}}}} \right) + }\\ {\left. {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_{m - 1}}\left( {{\gamma _1}} \right)\left( {\frac{{{R^2}z}}{{4\omega _0^4{k^2}}}} \right)} \right], }\\ {{{\left\langle {\varphi _x^2 + \varphi _y^2} \right\rangle }_1} = {f_1}\frac{{w_0^2}}{{8{\rm{ \mathit{ π} }}}}\left[ {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_m}\left( {{\gamma _1}} \right){v_1} + } \right.}\\ {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_{m + 1}}\left( {{\gamma _1}} \right)\left( {\frac{{{R^2}}}{{4\omega _0^4{k^2}}}} \right) + }\\ {\left. {\exp \left( { - {\gamma _1}} \right){{\rm{I}}_{m - 1}}\left( {{\gamma _1}} \right)\left( {\frac{{{R^2}}}{{4\omega _0^4{k^2}}}} \right)} \right]} \end{array} $
(9) 式中,Im表示m阶修正的贝塞尔函数和。
$ \left\{ \begin{array}{l} {f_1} = \frac{{{{\left( {2{\rm{ \mathit{ π} }}} \right)}^6}w_0^2D}}{{8{\rm{ \mathit{ π} }}{k^2}}}\\ {\gamma _1} = \frac{{{R^2}}}{{4w_0^2}}\\ {g_1} = \left( {\frac{{w_0^2}}{2} + \frac{{2{z^2}}}{{w_0^2{k^2}}} + \frac{{4{{\rm{ \mathit{ π} }}^2}{z^3}T}}{3} + } \right.\\ \;\;\;\;\;\;\left. {\frac{{{R^2}{z^2}}}{{2w_0^4{k^2}}} - \frac{{{R^2}}}{8}} \right)\\ {j_1} = \left( {\frac{{2z}}{{w_0^2{k^2}}} + 2{{\rm{ \mathit{ π} }}^2}{z^2}T + \frac{{{R^2}z}}{{2w_0^4{k^2}}}} \right)\\ {v_1} = \left( {\frac{{2z}}{{w_0^2{k^2}}} + 4{{\rm{ \mathit{ π} }}^2}zT + \frac{{{R^2}}}{{2w_0^4{k^2}}}} \right) \end{array} \right. $
(10) 式中,T是与空间功率谱函数相关的一个参量。同理可以求出W2(ρ1, ρ2, 0), W3(ρ1, ρ2, 0), W4(ρ1, ρ2, 0)的参量组合。根据魏格纳分布函数的二阶矩理论,可以分析光束束宽〈x2+y2〉1/2和光束发散角〈φx2+φy2〉1/2的变化规律,同时可以求出非零交叉项〈xφx+yφy〉1/2,由光束束宽,光束发散角和非零交叉项,受遮挡贝塞尔-高斯光束的M2因子为[10, 21]:
$ \begin{array}{*{20}{c}} {{M^2}\left( z \right) = }\\ {k{{\left( {\left\langle {{r^2}} \right\rangle + \left\langle {{\varphi ^2}} \right\rangle - {{\left\langle {r\varphi } \right\rangle }^2}} \right)}^{1/2}} = }\\ {k\left\{ {\left[ {{{\left\langle {{x^2} + {y^2}} \right\rangle }_1} + {{\left\langle {{x^2} + {y^2}} \right\rangle }_2} + {{\left\langle {{x^2} + {y^2}} \right\rangle }_3} + } \right.} \right.}\\ {\left. {{{\left\langle {{x^2} + {y^2}} \right\rangle }_4}} \right] \times \left[ {{{\left\langle {\varphi _x^2 + \varphi _y^2} \right\rangle }_1} + {{\left\langle {\varphi _x^2 + \varphi _y^2} \right\rangle }_2} + } \right.}\\ {\left. {{{\left\langle {\varphi _x^2 + \varphi _y^2} \right\rangle }_3} + {{\left\langle {\varphi _x^2 + \varphi _y^2} \right\rangle }_4}} \right] - \left[ {{{\left\langle {x{\varphi _x} + y{\varphi _y}} \right\rangle }_1} + } \right.}\\ {{{\left\langle {x{\varphi _x} + y{\varphi _y}} \right\rangle }_2} + {{\left\langle {x{\varphi _x} + y{\varphi _y}} \right\rangle }_3} + }\\ {{{\left. {{{\left. {{{\left\langle {x{\varphi _x} + y{\varphi _y}} \right\rangle }_4}} \right]}^2}} \right\}}^{1/2}}} \end{array} $
(11)
受遮挡贝塞尔-高斯光束在湍流大气传输的M2因子
M2 factor of disturbed Bessel-Gaussian beam propagating in turbulent atmosphere
-
摘要: 为了研究受遮挡贝塞尔-高斯光束在湍流大气中传输时质量因子的特性,基于拓展的惠更斯-菲涅耳原理和维格纳分布函数的二阶矩定义,经理论推导得出受遮挡贝塞尔-高斯光束的解析表达式,并进行了相应的数值计算。结果表明,当遮挡物尺寸不大于0.4倍的腰宽时,受遮挡贝塞尔-高斯光束在湍流大气中的传输质量因子随传播距离、湍流大气结构常数的增大而增大,随着湍流内标量、光束拓扑荷数的增大而减小。在相同条件下,光束的传输质量因子随着遮挡物尺寸的增大而增大。所得结论对实际激光传输和自由空间光通信有一定的参考价值。
-
关键词:
- 大气与海洋光学 /
- M2因子 /
- 拓展的惠更斯-菲涅耳原理 /
- 贝塞尔-高斯光束
Abstract: In order to study the propagation properties of the disturbed Bessel-Gaussian beam in turbulent atmosphere, based on the extended Huygens-Fresnel principle and the second-order moments of the Wigner distribution function, the formulas of M2 factor for the disturbed Bessel-Gaussian beam were derived by theoretical calculation analysis, and the corresponding numerical calculation was carried out. The results show that, when the size of obstruction is not more than 0.4 times of beam width, the propagation factor of Bessel-Gaussian beam in turbulent atmosphere would increase with the increasing of the propagation distance and atmospheric structure constant, and decrease with the increasing of the inner scale of turbulence and topological charge indexes. Under the same condition, the propagation factor of Bessel-Gaussian beam in turbulent atmosphere increases with the increase of the size of obstruction. These results have certain reference value in free space optical communication and actual laser transmission. -
-
[1] NIU H H, HAN Y P. Performance analysis of Bessel-Gaussian vortex beam propagation in atmospheric turbulence[J]. Laser Technology, 2017, 41(3):451-455(in Chinese). [2] ZHU Y, CHEN M Y, ZHANG Y X, et al. Propagation of the OAM mode carried by partially coherent modified Bessel-Gaussian beams in an anisotropic non-Kolmogorov marine atmosphere[J]. Journal of the Optical Society of America, 2016, A33(12):2277-2283. [3] ZHU K C, LI S X, TANG Y, et al. Study on the propagation parameters of Bessel-Gaussian beams carrying Optical vortices through atmospheric turbulence[J]. Journal of the Optical Society of America, 2012, A29(3):251-257. [4] NELSON W, PALASTRO J P, DAVIS C C. Propagation of Bessel and Airy beams through atmospheric turbulence[J]. Journal of the Optical Society of America, 2014, A 31(3):603-609. [5] WANG X Y, YAO M W, QIU Z L, et al. Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence[J]. Optics Express, 2015, 23(10):12508-12523. doi: 10.1364/OE.23.012508 [6] XU K T, YUAN Y H, FENG X, et al. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. Laser Technology, 2015, 39(6):877-884(in Chinese). [7] WU Y Q, ZHANG Y X, LI Y. Beam wander of Gaussian-Schell model beams propagating through oceanic turbulence[J]. Optics Communications, 2016, 371:59-66. doi: 10.1016/j.optcom.2016.03.041 [8] DAN Y Q, ZHANG B. Second moments of partially coherent beams in atmospheric turbulence[J].Optics Letters, 2009, 34(5):563-565. doi: 10.1364/OL.34.000563 [9] ZHAO Q, ZHONG M, LÜ B D. Experimental study about laser beam wander in atmosphere[J]. Laser Technology, 2010, 34(4):532-534(in Chinese). [10] DAN Y Q, ZHANG B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Optics Express, 2008, 16(20):15563-15575. doi: 10.1364/OE.16.015563 [11] BIRCH P, ITUEN I. Long-distance Bessel beam propagation through Kolmogorov turbulence[J]. Journal of the Optical Society of America, 2015, A32(11):2066-2073. [12] YANG G C, HAN S C, LIU X C, et al. Scintillation and dancing of laser beam propagation in marine atmosphere[J]. Laser Technology, 1991, 15(2):104-107(in Chinese). [13] WU J. Propagation of a Gaussian-Schell beam through turbulent media[J]. Journal of Modern Optics, 1990, 37(4):671-684. doi: 10.1080/09500349014550751 [14] CHENG W, HAUS J W, ZHAN Q W. Propagation of vector vortex beams through a turbulent atmosphere[J]. Optics Express, 2009, 17(20):17829-17836. doi: 10.1364/OE.17.017829 [15] DURNIN J, MICELI J, EBERLY J. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15):1499-1501. doi: 10.1103/PhysRevLett.58.1499 [16] QIAO C H, FENG X X, CHU X X. Propagation and self-healing ability of a Bessel-Gaussian beam modulated by Bessel gratings[J]. Optics Communications, 2016, 365:24-28. doi: 10.1016/j.optcom.2015.11.079 [17] CHU X X, WEN W. Quantitative description of the self-healing ability of a beam[J]. Optics Express, 2014, 22(6):6899-6904. doi: 10.1364/OE.22.006899 [18] CHENG M J, GUO L X, LI J T. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J]. Journal of the Optical Society of America, 2016, A33(8):1442-1450. [19] LI S H, WANG J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams[J]. Scientific Reports, 2017(7):43233. [20] YUAN Y S, LEI T, LI Z H, et al. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams[J]. Scientific Reports, 2017(7):42276. [21] SERNA J, MARTÍNEZ-HERRERO R, MEJÍAS P M. Parametric characterization of general partially coherent beams propagating through ABCD optical systems[J]. Journal of the Optical Society of America, 1991, A8(8):1094-1098.