-
采用声光调制-光纤放大的光纤环路移频反馈激光器实验装置如图 1所示。该装置由连续激光器、声光调制器(acousto-optic modulation,AOM)、光纤放大器(ytterbium-doped fiber amplifier,YDFA)、光探测器、2×2光纤耦合器组成。波长为1064nm连续激光由输入端1注入2×2光纤耦合器,经由输出端口2输入声光调制器,声光调制器调制频率fAO,入射的激光经由声光调制器发生+1级衍射,衍射光由光纤放大器放大后,再经由输入端口2进入耦合器,部分光由输出端口2输出,端口2接探测器进行探测。输出端口1与输入端口2间形成环路,激光不断在环路中发生频移调制,由端口2输出频率间隔一致(fAO)的移频反馈激光,即实现了光学频率梳。
-
设矩阵[tij]是耦合器的分光比,tij为其矩阵元,Ein是输入的电场,Eout是输出的电场,则输入的电场Ein与输出的电场Eout之间满足公式:
$ \left[ \begin{array}{l} {E_{{\rm{out, }}1}}\\ {E_{{\rm{out, 2}}}} \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {{t_{11}}}&{{t_{12}}}\\ {{t_{21}}}&{{t_{22}}} \end{array}} \right]\left[ \begin{array}{l} {E_{{\rm{in, 1}}}}\\ {E_{{\rm{in, }}2}} \end{array} \right] $
(1) 因为光纤组成一个闭合环路,则环路入射到耦合器的光场满足公式:
$ {E_{{\rm{in, 2}}}}(t) = \gamma {E_{{\rm{out, 2}}}}(t - \tau ){\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {t - \tau } \right)} \right] $
(2) 式中,t为时间变量,τ为光在环路中循环一次的时间,γ为表示频移、放大、相位偏置因素共同影响的复数。若设η为声光移频器的衍射系数,G为放大器的强度增益参量,φ为相位参量,则$ \gamma = \sqrt {\eta G} {{\rm{e}}^{{\rm{i}}\varphi }}$。其中φ为常量,通过调整初始的时间值,φ值可调为0。
由(1)式可以得到:
$ {E_{{\rm{out, 2}}}}\left( t \right) = {t_{12}}{E_{{\rm{in, 1}}}}(t) + {t_{22}}{E_{{\rm{in, }}2}}(t) $
(3) 将(2)式代入(3)式,则可得:
$ \begin{array}{l} {E_{{\rm{out, 2}}}}(t) = {t_{21}}{E_{{\rm{in, 1}}}}(t) + \\ {t_{22}}\gamma {E_{{\rm{out, 2}}}}(t - \tau ){\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {t - \tau } \right)} \right] \end{array} $
(4) 公式展开如下:
$ \left\{ \begin{array}{l} {E_{{\rm{out, 2}}}}\left( {t - \tau } \right) = {t_{21}}{E_{{\rm{in, 1}}}}(t - \tau ) + {t_{22}}\gamma {E_{{\rm{out, 2}}}}\left( {t-2\tau } \right) \times \\ {\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {t - 2\tau } \right)} \right]\\ {E_{{\rm{out, 2}}}}(t - 2\tau ) = {t_{21}}{E_{{\rm{in, 1}}}}\left( {t - 2\tau } \right) + {t_{22}}\gamma {E_{{\rm{out, 2}}}}(t - 3\tau ) \times \\ {\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {t - 3\tau } \right)} \right] \end{array} \right. $
(5) 将(5)式代入(4)式,可得:
$ \begin{array}{l} {E_{{\rm{out, 2}}}}\left( t \right) = {t_{21}}{E_{{\rm{in, 1}}}}(t) + \\ {t_{21}}{t_{22}}\gamma {E_{{\rm{in, 1}}}}(t - \tau ){\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {t - \tau } \right)} \right] + \\ {t_{21}}{({t_{22}}\gamma )^2}{E_{{\rm{in, 1}}}}(t - 2\tau ){\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {t - 2\tau } \right)} \right] + \\ {t_{21}}{({t_{22}}\gamma )^3}{E_{{\rm{in, 1}}}}(t - 3\tau ){\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {t - 3\tau } \right)} \right] + \\ \ldots \end{array} $
(6) (6) 式整理可得:
$ \begin{array}{l} {E_{{\rm{out, 2}}}}\left( t \right) = {t_{21}}\sum\limits_{p = 0}^\infty {} {\left( {{t_{22}}\gamma } \right)^p}{E_{{\rm{in, 1}}}}(t - p\tau ) \times \\ {\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}p\left( {t - \tau } \right)} \right]{\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}{p^2}t} \right] \end{array} $
(7) 实验中需要对输出端1的输出电场进行探测,即Eout, 1,且由于输入端1的输入电场Ein, 1易于测量。根据(2)式和(7)式,Eout, 1(t)可写为:
$ \begin{array}{l} {E_{{\rm{out, }}1}}\left( t \right) = {t_{11}}{E_{{\rm{in, 1}}}}(t) + {t_{12}}{E_{{\rm{in, 2}}}}\left( t \right) = {t_{11}}{E_{{\rm{in, 1}}}}\left( t \right) + \\ {t_{12}}\gamma {E_{{\rm{out, 2}}}}(t - \tau ){\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {t - \tau } \right)} \right] \end{array} $
(8) 如果入射电场Ein, 1为连续波,其能量为Pin,则满足:
$ \begin{array}{l} {E_{{\rm{out, }}1}}(t) = \left\{ {} \right.{\rm{ }}{t_{11}} + {t_{12}}\gamma {t_{21}}\sum\limits_{p = 0}^\infty {} {\left( {{t_{22}}\gamma } \right)^p} \times \\ {\rm{exp}}\left[ {{\rm{i2 \mathsf{ π} }}{f_{{\rm{AO}}}}\left( {p + 1} \right)\left( {t - \tau } \right)} \right] \times \\ {\rm{exp}}\left[ {{\rm{-i2 \mathsf{ π} }}{f_{{\rm{AO}}}}{p^2}t} \right]\left. {} \right\}\sqrt {{\rm{ }}{P_{{\rm{in}}}}} \end{array} $
(9) 式中, tij满足关系Tij=|tij|2,Tij为耦合器的光强传输系数,实验测得。
光纤环路移频反馈激光器及放大器增益的研究
Research of frequency-shifted feedback laser based on fiber loop and amplifier gain
-
摘要: 基于声光调制的频移反馈激光器是目前研究的热点,它可以生成一串频率间隔相同的谐波。为了生成多频激光,采用移频反馈激光器的方法,设计了一种全光纤式移频-放大反馈环路,建立了基于频移反馈腔的激光外差相关理论模型,并进行了数值仿真。同时,在环路中引入光纤放大器,研究了增益系数对各阶次谐波相应强度的影响,验证了不同增益系数对各阶次频率的选择作用。结果表明,利用频移反馈回路,实现了数倍于基频的高频调制,最高调制频率可达4GHz。这为新体制高频调制激光的研究奠定了理论及实验基础。Abstract: Frequency-shifted feedback laser based on acousto-optic modulation was one research hotspot in the current, and it can produce a string of harmonic wave with same interval frequency. In order to generate multi-frequency laser, the frequency-shifted feedback laser method was adopted to design an all-fiber frequency-shifted amplified feedback loop. A theoretical model of laser heterodyne correlation was established and the numerical simulation was carried out. At the same time, a fiber amplifier was introduced into the loop, and the influence of gain coefficient on the corresponding intensity of each harmonic was studied. The selection of different gain parameters for each order frequency was verified. The results show that, frequency-shifted feedback loop could be used to achieve the high-frequency modulation, several times of the fundamental frequency modulation. The highest modulation frequency is up to 4GHz. The study lays the theoretical and experimental foundation for the research of the new system of high-frequency modulation laser.
-
Key words:
- lasers /
- frequency shifted feedback laser /
- acousto-optic modulate /
- fiber amplifier
-
-
[1] RYU H Y, MOON H S, SUH H S. Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding[J]. Optics Express, 2007, 15(18):11396-11401. doi: 10.1364/OE.15.011396 [2] YOSHIDA M, FUJIMOTO M, NAKAZAWA M, et al. A mode-locked frequency-shifted feedback fiber lasers[C]//Coference on Lasers and Electro-Optics, 2001. New York, USA: IEEE, 2001: 299-300. [3] HALE P D, KOWALSKI F V. Output characterization of a frequency shifted laser:Theory and experiment[J]. Journal of Quantum Electronics, 1990, 10(10):1845-1851. [4] BERRY M V, KLEIN S. Integer, fractional and fractal Talbot effects[J]. Journal of Modern Optics, 1996, 43(10):2139-2164. doi: 10.1080/09500349608232876 [5] de CHATELLUS H G, PIQUE J P. Statistical properties of frequency shifted feedback lasers[J]. Optics Communications, 2010, 283(1):71-77. doi: 10.1016/j.optcom.2009.09.027 [6] YATSENKO L P, SHORE B W, BERGMANN K. Theory of a frequency-shifted feedback laser[J]. Optics Communications, 2004, 236(1/3):183-202 [7] ZHANG H Y, BRUNEL M, ROMANELLI M, et al. Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity[J]. Applied Optics, 2016, 55(10):2467-2473. doi: 10.1364/AO.55.002467 [8] VALLET M, BARREAUX J, ROMANELLI M, et al. Lidar-radar velocimetry using a pulse-to-pulse coherent RF-modulated Q-switched laser[J]. Applied Optics, 2013, 52(22):5402-5410. doi: 10.1364/AO.52.005402 [9] HEIDT V, BURGER J P, MARAN J N.High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser[J]. Optics Express, 2007, 15(24):15892-15897. doi: 10.1364/OE.15.015892 [10] SABERT H, BRINKMEYER E. Pulse generation in fiber lasers with frequency shifted feedback[J]. Journal of Lightwave Technology, 1994, 12(8):1360-1368. doi: 10.1109/50.317522 [11] NIKODEM M P, KLUZNIAK E, ABRAMASKI K. Wavelength tenability and pulse duration control in frequency shifted feedback re-doped fiber lasers[J]. Optics Express, 2009, 17(5):3299-3304. doi: 10.1364/OE.17.003299 [12] NAKAMURA K, HARA T, YOSHIDA M, et al. Optical frequency domain ranging by a frequencyshifted feedback laser[J]. IEEE Journal of Quantum Electronics, 2000, 36(3):305-316. doi: 10.1109/3.825877 [13] KOWALSKI F V, NDIAYE C, NAKAMURA K. Noise waveforms with repetitive phase and nonrepetitive amplitude[J]. Optics Letters, 2002, 27(22):1965-1967. doi: 10.1364/OL.27.001965 [14] YATSENKO L P, SHORE B W, BERGMANN K. Coherence in the output spectrum of frequency shifted feedback lasers[J]. Optics Communications, 2009, 282(2):300-309. doi: 10.1016/j.optcom.2008.10.002 [15] KOWALSKI F V, SQUIER J A, PINCKNEY J T. Pulse generation with an acousto-optic frequency shifter in a passive cavity[J]. Applied Physics Letters, 1987, 50(12):711-713. doi: 10.1063/1.98075 [16] de CHATELLUS H G, JACQUIN O, HUGON O, et al. Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers[J]. Optics Express, 2003, 21(13):15065-15074. [17] KOWALSKI F V, NDIAYE C, NAKAMURA K. Noise waveforms generated by frequency shifted feedback lasers:application to multiple access communications[J]. Optics Communications, 2016, 231(1/6):149-164. [18] NIKODEM M, ABRAMSKI K. Controlling the frequency of the frequency shifted feedback fiber laser using injection-seeding technique[J]. Optics Communications, 2010, 283(10):2202-2205. doi: 10.1016/j.optcom.2010.01.030 [19] PHILLIPS M W, LIANG G Y, BARR J R M. Frequency comb generation and pulsed operation in a Nd:YAG laser with frequency-shifted feedback[J]. Optics Communications, 1993, 100(5/6):473-478. [20] COPPIN P, HODGKINSON T G. Novel optical frequency comb synthesis using optical feedback[J]. Electronics Letters, 1990, 26(1):28-30.