-
脉冲激光器驱动电路系统设计如图 1所示。主要包括FPGA触发信号、场效应管驱动、充放电回路及高压(high voltage, HV)模块。
-
利用FPGA内部频率为50MHz的晶振作为时钟信号,通过倍频模块锁相环(phase locking loop, PLL)实现脉宽可调,再把倍频模块倍频出来的时钟信号给计数器计数,计数值的设定就是占空比的设定,从而实现脉宽、占空比可调的触发信号。例如倍频到20MHz, 则计数脉冲的周期就是50ns,计数器设置计数值为4000,则计数器输出的脉冲脉宽为50ns,频率为5kHz。原理图设计如图 2所示。通过调试接口(joint test action group, JTAG)下载后,用Saleae Logic 16逻辑分析仪80MHz采样频率采集脉冲波形数据,导出数据格式为Csv,对导出数据绘制曲线如图 3所示。纵坐标为采样数据与标准输出3.3V的高电平作归一化后处理得到的相对高低电平,从横坐标显示的采样时间序列上可知,脉宽约为50ns。
-
场效应管具有良好的开关特性,其开关速度受到栅极驱动电平的控制,当高电平到来时打开,低电平关断,相对于雪崩晶体管性能更有优势[9],但是由于场效管存在内部电容,只有栅极输入高电平远高于开启电压且带动能力强,才能实现瞬间快速打开[10-11],因此选用专用MOSFET驱动芯片。EL7104C最大供电电压为16.5V, 输出电流最大可达1A, 响应速度快,上升沿时间为20ns,足以完全快速打开场效应管,产生大电流[12-13]。设计中采用12V直流供电,FPGA开关信号直接输入,输出电压作为后续场效应管的驱动信号,使得MOSFET快速打开与关断。
-
选用0V~200V直流可调高压模块对储能电容进行充放电,场效应管选用IRF640,漏极电流原理图如图 4所示。当FPGA触发脉冲经过EL7104C放大后,低电平时场效应管未打开,高压经功率电阻(20W)对电容进行充电,经过反向稳压二极管形成充电通路;当栅极高电平到来时,场效应管瞬间打开,电容上储存的电荷瞬间释放,经过敏感电阻和激光器形成放电回路,敏感电阻上的电压波形转换为电流值就是峰值电流的大小,电压波形脉宽就是实际通过激光器的驱动电流的脉宽[5]。根据总电荷量守恒的原理可知,理论上高压U、电容C、峰值电流I和脉宽Tp之间存在如下关系式:
$ C\times U=I\times {{T}_{p}} $
(1) 以上仅为理论上的关系公式,电路中存在大量寄生电感和电容,实际上参与储能电容充放电的电容量不止电路图中给的电容,有布局布线和场效管以及激光管管脚等带来的寄生电容和电感,所以实验数据中的电容只是一个数据趋势参考,可以进行定性分析。峰值电流主要和高压有关系,而脉宽主要和电容有关系[14]。为此通过改变高压和电容的大小,分别测试峰值电流和脉宽的大小,对驱动电流的特性进行了具体分析。
-
图 5是利用示波器查看电阻Rs上的电压波形,以此监测脉冲电流的峰值电流和脉宽及波形。此时电压波形峰值接近3V, 脉宽约20ns,电阻为0.2Ω,则相应峰值电流大小为15A。
当高压不变、改变电容的值时,分别测量峰值电流和脉宽,由测试数据做出相应的变化曲线,如图 6所示。可以看出, 脉宽随着电容增大而展宽,近似成线性关系;峰值电流开始时随着电容增大而增大,当电容增加到一定容量时,峰值电流几乎不再随着电容的变化而变化,趋于稳定。
当电容不变、改变高压时,分别测量峰值电流和脉宽,由测试数据做出相应的变化曲线,如图 7所示。可以看出, 脉宽随着高压的变化保持稳定不变,峰值电流随着高压的升高而增大,当升高到一定程度时趋于饱和。
为了进一步确定此时脉冲激光二极管是否已产生激光,利用赛凡光电7IGF10光谱仪测试了脉冲激光二极管的光谱,将采集数据导出后绘制光谱曲线,如图 8所示。纵坐标为相对光强,光谱宽度约为6nm,峰值波长为905nm,确实已经产生激光。
Figure 8. Relationship between relative light intensity and wavelength of 905nm InGaAs pulse laser diode
利用上述实验分析可知,驱动电流峰值主要随高压变化,脉宽随变容变化,通过改变高压,即改变峰值电流来测试905nm InGaAs脉冲激光二极管峰值功率。其中峰值功率的计算表达式为:
$ P = \frac{{\bar P \times T}}{{{T_{\rm{p}}}}} $
(2) 式中, P为激光脉冲峰值功率,$\overline{P}$为光功率计所测平均功率,T为脉冲周期,Tp为激光脉冲的宽度[15-16]。
当选择频率为5kHz、脉宽为20ns时,测得P-I曲线如图 9所示。由于实验室采用的光功率计型号为TEKTOP200,最大测量平均功率不能超过+3dBm,所以当平均功率超过3dBm时,为了防止光功率计损坏,加入了15dB衰减器,衰减器连接时存在插入损耗和可重复性问题,所以在峰值功率接近20W时,P-I曲线存在一些局部跳跃。
905nm InGaAs脉冲激光二极管驱动电流特性分析与测试
Analysis and measurement on drive current characteristics of 905nm InGaAs pulse laser diodes
-
摘要: 为了实现高功率905nm InGaAs脉冲激光二极管激光脉冲宽度和峰值功率可调,采用现场可编辑门阵列产生触发脉冲、集成模块EL7104C作为金属氧化物半导体场效应晶体管(MOSFET)驱动、以MOSFET为核心开关器件控制高压模块和储能电容之间充放电的方法,设计了脉冲激光二极管驱动电路,对驱动电流特性进行了理论分析和实验验证,取得了不同电容和高压条件下的电流脉宽和峰值数据,分析了具体变化关系,并以此进行了光谱和功率-电流特性测试。结果表明,影响驱动电流脉宽和峰值电流的关键因素是电容大小和充电高压,脉冲激光二极管驱动电流峰值在0A~40A、脉宽20ns~100ns时可控调节,脉冲激光二极管最大峰值功率输出可达40W,实现了脉冲式半导体激光器输出功率和脉冲宽度的可控调节。该设计与分析对近红外高功率脉冲激光器的可控驱动设计具有一定的实用参考意义。Abstract: In order to realize the adjustment of pulse width and peak power of a high power 905nm InGaAs pulse laser diode, field-programmable gate array (FPGA) was adopted to generate trigger pulse, the integrated module EL7104C was used as the driver of metal oxide semiconductor field effect transistor (MOSFET) and the switching device with MOSFET as the core was used to control the charging and discharging between the high voltage module and energy storage capacitor. The pulsed laser diode driver circuit was designed. The driving current characteristics were theoretically analyzed and experimentally verified. Pulse width and peak data were obtained under different capacitance and high voltage conditions. The specific change relationship was analyzed. The spectrum and power-current characteristics were tested. The results show that, the key factors affecting the driving current pulse width and peak current were the capacitor size and charging voltage. The pulse laser diode can be controlled with peak drive current from 0A to 40A and pulse width from 20ns to 100ns. The maximum peak power output of pulsed laser diode is up to 40W. The controllable modulation of output power and pulse width of a pulsed semiconductor laser is realized. The design and analysis have practical reference significance for the controllable driving design of near infrared high power pulsed lasers.
-
Key words:
- laser technique /
- controllability and regulation /
- peak current /
- pulse width /
- high voltage /
- capacitance
-
-
[1] LIU F. Development and application of the pulsed LD rangefinder[J]. Infrared and Laser Engineering, 2003, 32(2): 10-14(in Chinese). [2] LIU X Sh, LIN J L, ZHANG H M, et al. The study of nanosecond pulsed diode laser driver[J]. Laser Technology, 2006, 30(4):111-114(in Chinese). [3] WANG W, XIA L Sh, CHENG Y, et al. Laser diode driver used for triggering photoconductive semiconductor switch[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(1):150-160(in Chinese). [4] ZHAO Q, MENG Q A, JIANG Z W, et al. Study on parameter measurement precision of high energy laser beam with large aperture[J]. Laser Technology, 2015, 39(1):104-107(in Chinese). [5] JIANG X L. The research of vehicle anti-collision system based on the infrared laser ranging technology[D]. Changsha: Hunan University, 2011: 7-9(in Chinese). [6] LIU Y, ZOU J, XIE P Y, et al. A high-peak and narrow-width pulsed source of LD[J]. Piezoelectrics & Acoustooptics, 1992, 14(6):27-29(in Chinese). [7] ZHANG X F, ZHAO K X, ZHANG S N. Design of waveform module in a pulse generator based on FPGA[J]. Journal of Changchun University of Technology, 2011, 32(3):56-60(in Chinese). [8] ZHANG Y Ch, SUN L J, FU Sh Y, et al. Research on adjustable high power high pulse-repetition-frequency compact LD power supply[J].Laser Technology, 2012, 36(6):731-734(in Chinese). [9] GAO J B. Design of pulse semiconductor laser ranging circuit and system[D].Chengdu: University of Electronic Science and Technology of China, 2006: 19-23(in Chinese). [10] ZHANG Sh Q, LOU Q H, ZHOU J, et al. Design of drive circuit for continuously adjustable ns pulse LD[J]. Laser Technology, 2008, 32(4):396-398(in Chinese). [11] SUN D G, TANG H F. Study on the PWM driver circuit of LD for laser fuze[J]. Laser Technology, 2007, 31(2):217-219(in Chinese). [12] SUN X X. The hardware design of pulse laser range finder[D].Chengdu: University of Electronic Science and Technology of China, 2014: 30-33(in Chinese). [13] DING R M. The circuit research of long distance ranging system based on high-frequency laser[D].Changsha: Zhongnan University, 2012: 16-17(in Chinese). [14] YANG Y, YU D H, WU Y F, et al. Design of a novel drive power for narrow pulse laser diode[J]. Chinese Journal of Lasers, 2011, 38(2):0202003(in Chinee). doi: 10.3788/CJL [15] ZHU M, LU Y D, MAN Ch Y, et al. Peak power measurement of high power and high speed diode laser[J]. Journal of Optoelectronics·Laser, 2006, 17(11):64-66(in Chinese). [16] HAN G, YAN B. Study on testing method for peak power and average power of pulse laser[J]. Industrial Measurement, 2008, 18(6):9-11(in Chinese).