-
微角分束偏光棱镜属单元式结构,棱镜的结构和分光光路如图 1所示。图中双箭头表示晶体光轴方向,S表示棱镜的结构角。在本文的分析中,对涉及与光有关的角度作如下约定:由光线(或光波)到介面法线顺时针所成的角为正,逆时针所成的角为负。
-
当一束非偏振光正入射于棱镜时(见图 1),由于进入棱镜的光传播方向与晶体光轴垂直,则寻常光(o光)和非寻常光(e光)传播方向相同,但是传播的速度不同。由于o光、e光波主折射率的不同,在棱镜的出射界面,o光、e光的折射角也不同,分束角φ的大小即为两束光折射角的差值。φo和φe分别表示o光和e光在出射介面的折射角的大小,由折射定律和图 1中的几何关系可以得到:
$ \left\{ \begin{array}{l} {\varphi _{\rm{o}}} = \arcsin ({n_{\rm{o}}}\sin S)\\ {\varphi _{\rm{e}}} = \arcsin ({n_{\rm{e}}}\sin S) \end{array} \right. $
(1) 则分束角的大小为:
$ \varphi = \arcsin ({n_{\rm{o}}}\sin S) - \arcsin ({n_{\rm{e}}}\sin S) $
(2) 式中, no和ne是棱镜中冰洲石晶体的主折射率,它们色散关系由下两式给出[19]:
$ {n_{\rm{o}}}^2 = 2.6926 + \frac{{0.0192}}{{{\lambda ^2} - 0.0195}} - 0.0143{\lambda ^2} $
(3) $ {n_{\rm{e}}}^2 = 2.1846 + \frac{{0.0085}}{{{\lambda ^2} - 0.0143}} - 0.0023{\lambda ^2} $
(4) 图 2是当S=0.175rad时,由(2)式~(4)式拟合的棱镜分束角与工作波长的关系曲线。由图中曲线可以看出:对于确定的棱镜结构角,微角分束偏光棱镜的分束角随工作波长的增大而变小。
-
当光以一定的角度α入射时,棱镜的分光光路如图 3所示。由于晶体中o光、e光对应的折射率不同,入射光经介面1的折射,棱镜中的o光、e光波折射角也不同,从而o光和e光发生分离,其在介面1上的折射角分别为θo和θe,在介面2上入射角分别为αo和αe,折射角分别为φo和φe。
对于o光,在介面1和介面2上折射分别为:
$ \sin \alpha = {n_{\rm{o}}}\sin {\theta _{\rm{o}}} $
(5) $ {n_{\rm{o}}}\sin {\alpha _{\rm{o}}} = \sin {\varphi _{\rm{o}}} $
(6) 由以上两式及图 2中的角度关系αo=S+θo,可得介面2上o光的折射角为:
$ {\varphi _{\rm{o}}} = \arcsin \left\{ {{n_{\rm{o}}}\sin \left[ {S + \arcsin \left( {\frac{{\sin \alpha }}{{{n_{\rm{o}}}}}} \right)} \right]} \right\} $
(7) 对于e光,同样有:
$ \sin \alpha = {n_{\rm{e}}}^\prime \sin {\theta _{\rm{e}}} $
(8) $ {n_{\rm{e}}}^\prime \sin {\alpha _{\rm{e}}} = \sin {\varphi _{\rm{e}}} $
(9) αe=S+θe,e光在第2个面上的折射角为:
$ {\varphi _{\rm{e}}} = \arcsin \left[ {{n_{\rm{e}}}^\prime \sin(S + {\theta _{\rm{e}}})} \right] $
(10) 于是得到微角分束偏光棱镜的分束角关于入射角的关系式为:
$ \begin{array}{l} \varphi = {\varphi _{\rm{o}}} - {\varphi _{\rm{e}}} = \arcsin \left\{ {{n_{\rm{o}}}\sin \left[ {S + \arcsin \left( {\frac{{\sin \alpha }}{{{n_{\rm{o}}}}}} \right)} \right]} \right\} - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\arcsin \left[ {{n_{\rm{e}}}^\prime \sin(S + {\theta _{\rm{e}}})} \right] \end{array} $
(11) 式中,
$ {n_{\rm{e}}}^\prime = \frac{{{n_{\rm{o}}}{n_{\rm{e}}}}}{{{{({n_{\rm{o}}}^2{{\cos }^2}{\theta _{\rm{e}}} + {n_{\rm{e}}}^2{{\sin }^2}{\theta _{\rm{e}}})}^{\frac{1}{2}}}}} $
(12) $ {\theta _{\rm{e}}} = \arctan \left[ {\frac{{{n_{\rm{o}}}\sin \alpha }}{{{{({n_{\rm{e}}}^2{n_{\rm{o}}}^2 - {n_{\rm{e}}}^2{{\sin }^2}\alpha )}^{\frac{1}{2}}}}}} \right] $
(13) 以冰洲石晶体为双折射材料,取微角分束偏光棱镜的结构角S=0.175rad,由(2)式~(4)式和(11)式~(13)式, 通过MATLAB软件模拟的分束角与工作波长和入射角的关系, 如图 4所示。
微角分束偏光棱镜分束角的特性研究
Characteristics of splitting angles of micro-angle beam splitting polarization prisms
-
摘要: 为了了解微角分束偏光棱镜的分束特性,根据冰洲石晶体的光学性质以及光在棱镜入射与出射介面和棱镜中的传播方向,在光正入射的条件下,分析了棱镜的分束角随工作波长的变化关系; 在工作波长一定的条件下,分析了入射角对棱镜分束角大小的影响及规律; 设计了实验,对制作的棱镜样品进行了实验测试。结果表明,微角分束偏光棱镜的分束角随工作波长而变,且波长越短,分束角越大; 在棱镜的主截面内,入射角由-20°~20°变化时,分束角呈非线性由小变大。这一结果对于微角分束偏光棱镜的设计和使用具有实际价值。Abstract: In order to study splitting characteristics of micro-angle beam splitting polarization prisms, according to optical properties of calcite crystals, from propagation direction of the light in incident interface, exit interface, and prism internal, the relationship between splitting angle and wavelength was analyzed at normal incidence. For a certain wavelength, the influence of incident angle on beam splitting angle was analyzed. After the experiment of three prism samples, the results show that splitting angle of a micro-angle beam splitting polarization prism changes with the change of wavelength of the incident light. The shorter the wavelength, the greater the splitting angle. In the principal cross section of prism, the change range of incident angle is of -20°~20° and splitting angle increases nonlinearly. The results have certain value for the design and usage of micro-angle beam splitting polarization prisms.
-
Key words:
- polarization optics /
- polarization beam /
- splitting angle /
- incident angle /
- operating wavelength
-
[1] LI J Zh. Handbook of optics[M].Xi'an: Shaanxi Science and Technology Press, 1986:483-531(in Chinese). [2] ZHANG C M, LIU N, WU F Q. Analysis and calculation of Glan-Taylor prism's transmittance at full angle of view in a polarization interference [J].Acta Physica Sinica, 2010, 59(2):949-956(in Chinese). [3] SOREF R A, MCMAHON D H. Optical design of Wollaston-prism digital light deflectors[J].Applied Optics, 1966, 5(3):425-434. doi: 10.1364/AO.5.000425 [4] ZHOU J, SU G Y, SHI R Y. The influence of adjustable beam splitting prism on laser beam[J]. Laser Technology, 2002, 26(1):75-78(in Chinese). [5] ZHU J K, WU F Q, REN Sh F. Forward and backward splitting angles of Wollaston prisms and their symmetry[J]. Laser Technology, 2012, 36(5):636-638(in Chinese). [6] ZHU H F, SONG L K, WU F Q. et al. Calculation of the splitting angle of Wollaston prism by means of coordinate conversion[J]. Laser Technology, 2003, 27(4):362-364(in Chinese). [7] WONG G, PILKINGTON R, HARVEY A R. Achromatization of Wollaston polarizing beam splitters [J].Optics Letters, 2011, 36(8):1332-1334. doi: 10.1364/OL.36.001332 [8] DENG H Y, WU F Q, TANG H J. The spectral properties of the splitting angle for Wollaston prism[J]. Laser Journal, 2005, 26(4):42-43(in Chinese). [9] ZHU H F, NAN Y J, YUN M J, et al. Precise analysis of the intensity splitting ratio of double Wollaston prism[J]. Acta Optica Sinica, 2012, 32(6):0623002(in Chinese). doi: 10.3788/AOS [10] WANG W, WU F Q, SU F F. A modified symmetric splitting angle prism[J]. Journal of Optoelectronics·Laser, 2003, 14(9):913-916(in Chinese). [11] ZHU H F, SONG L K, WANG X M. Study about splitting intensity ratio of a prism with variable beam splitting angle[J]. Optical Technique, 2003, 29(5):614-616(in Chinese). [12] MA L L, SONG L K, WU F Q, et al. Splitting angle and light intensity splitting ratio of single-element polarized beam splitting prisms[J]. Laser Technology, 2008, 32(3):299-301(in Chinese). [13] WANG C M, SONG L K, WANG L, et al. Effect of incident angles on splitting ratio of Glan polarizing splitting prisms[J]. Laser Technology, 2008, 32(2):212-214(in Chinese). [14] SIMON M C. Wollaston prism with large split angle[J]. Applied Optics, 1986, 25(3):369-376. doi: 10.1364/AO.25.000369 [15] LI G H. Adjustable beam splitting prism[J]. Journal of Optoelectronics·Laser, 1982, 2(1):60-64(in Chinese). [16] LI G H, WU F Q, YU D H. The dependence of beam splitting angle of adjustable beam splitting prism on the incident angle[J]. Journal of Qufu Normal University, 1991, 17(2):54-57(in Chinese). [17] WANG W, WU F Q, SU F F. Symmetric polarization beam splitting prism based on three-element Wollaston prism[J]. Optical Technique, 2004, 30(2):182-186(in Chinese). [18] HUANG J Y, WU F Q, LI G H. Symmetry of beam splitting angle for uniaxial crystal prism[J]. Laser Technology, 1996, 20(2):104-107(in Chinese). [19] CHEN X Y, SHAN M. Dispersion formula of calcite[J]. Opto-Electronic Engineering, 2007, 34(5):38-42(in Chinese).