-
考虑宽带厄米-高斯光束通过一个如图 1所示的受光阑限制色散透镜系统。图中,2a是矩形硬边光阑的宽,F是焦点,f是焦距,P是考察面。基于惠更斯-菲涅耳衍射积分,可以得到宽带厄米-高斯光束中每一频率分量通过受光阑限制色散透镜系统的场分布为:
$ \begin{array}{c}{E_{m n}(x, y, z, \omega)=\frac{\mathrm{i} k}{2 {\rm{ \mathsf{ π} }} B} \exp (-\mathrm{i} k z) \times} \\ {\int_{-a}^{a} \int_{-a}^{a} E_{m n}\left(x_{0}, y_{0}, 0, \omega\right)\left\{\exp -\frac{\mathrm{i} k}{2 B}\left[A\left({x_0}^{2}+{y_0}^{2}\right)-\right.\right.} \\ {2\left(x_{0} x+y_{0} y\right)+D\left(x^{2}+y^{2}\right) ] \} \mathrm{d} x_{0} \mathrm{d} y_{0}}\end{array} $
(1) 式中, Emn(x0, y0, 0, ω)为初始入射光束,ω是频率,k是波数,m和n是模指数,(x0,y0)是初始横截面坐标,(x,y,z)是考察点坐标。ABCD为光束传输矩阵中的矩阵元,且传输矩阵为:
$ \boldsymbol{M}=\left[ \begin{array}{ll}{A} & {B} \\ {C} & {D}\end{array}\right]=\left[ \begin{array}{cc}{1-z / f(\lambda)} & {z} \\ {-1 / f(\lambda)} & {1}\end{array}\right] $
(2) 式中, 色散透镜的焦距为f(λ)=(n0-1)f0/[n(λ)-1],其中n0和f0是与中心波长λ0相关的折射率和焦距,n(λ)是与波长λ相关的折射率,λ是波长。考虑图 1中色散透镜的材料为熔石英,折射率n(λ)定义见参考文献[23]。
假设初始入射光束可以表示为Emn(x0, y0, 0, ω)=Emn(x0, y0, 0)f(ω),其中E0(x0, y0, 0)是入射光束的空间模式:
$ \begin{array}{c}{E_{m n}\left(x_{0}, y_{0}, 0\right)=\mathrm{H}_{m}\left(\sqrt{2} \frac{x_{0}}{w_{0}}\right) \mathrm{H}_{n}\left(\sqrt{2} \frac{y_{0}}{w_{0}}\right) \times} \\ {\exp \left[-\frac{\mathrm{i} k}{2 q_{0}}\left({x_0}^{2}+{y_0}^{2}\right)\right]}\end{array} $
(3) 式中, Hm()和Hn()为厄米多项式,w0是与基模高斯光束相关的束腰宽度,另有:
$ \frac{1}{q_{0}}=-\mathrm{i} \frac{\lambda}{{\rm{ \mathsf{ π} }} {w_0}^{2}}=\frac{2}{\mathrm{i} k {w_0}^{2}} $
(4) f(ω)是光束的频谱分布。考虑f(ω)在z=0处为高斯分布,即:
$ f(\omega)=\frac{a_{\mathrm{G}}}{\sqrt{2} \omega_{0} \gamma} \exp \left[-\frac{{a_\mathrm{G}}^{2}\left(\omega-\omega_{0}\right)^{2}}{{\omega_0}^{2} \gamma^{2}}\right] $
(5) 式中, γ=Δω/ω0是相对带宽, ω0是中心频率, 高斯型频谱对应参量aG=(2ln2)1/2。
宽带光束通过受光阑限制的色散透镜后,光场分布由(1)式得到:
$ \begin{aligned} E_{m n}(x, y, z, t) &=\frac{1}{2 {\rm{ \mathsf{ π} }}} \int_{-\infty}^{\infty} E_{m n}(x, y, z, \omega) \times \\ & \exp (\mathrm{i} \omega t) \mathrm{d} \omega \end{aligned} $
(6) 式中, t=z/c,c是光速。
为简单起见,只考虑1维情况,2维情况可以类似得到。因此通过对空间部分积分后,得到TEM11模和TEM22模厄米-高斯光束的空间场分布为:
$ \begin{array}{c}{E_{11}(x, z)=\frac{2 S}{T^{2}}\left\{\exp \left[-\left(\sqrt{\alpha T}+\frac{Q x}{w_{0}}\right)^{2}\right]-\right.} \\ {\quad \exp \left[-\left(\sqrt{\alpha T}-\frac{Q x}{w_{0}}\right)^{2}\right]+\frac{\sqrt{{\rm{ \mathsf{ π} }}} Q W_{x} x}{w_{0}} \}}\end{array} $
(7) $ \begin{array}{c}{E_{22}(x, z)=\frac{S}{T^{3}}\left\{-4\left(\sqrt{\alpha T}-\frac{Q x}{w_{0}}\right) \times\right.} \\ {\exp \left[-\left(\sqrt{\alpha T}+\frac{Q x}{w_{0}}\right)^{2}\right]-4\left(\sqrt{\alpha T}+\frac{Q x}{w_{0}}\right) \times} \\ {\exp \left[-\left(\sqrt{\alpha T}-\frac{Q x}{w_{0}}\right)^{2}\right]+} \\ {\sqrt{{\rm{ \mathsf{ π} }}} W_{x}\left[2-T+4 Q^{2}\left(\frac{x}{w_{0}}\right)^{2}\right] \}}\end{array} $
(8) 其中,
$ T=1-\frac{\mathrm{i} {\rm{ \mathsf{ π} }} F_{\mathrm{w}}(z-f) / f}{z / f} $
(9) $ Q=\frac{\mathrm{i} {\rm{ \mathsf{ π} }} F_{\mathrm{w}}}{T^{1 / 2} z / f} $
(10) $ S=\frac{\mathrm{i} F_{\mathrm{w}}}{z / f} \exp \left[\left(Q^{2}-\frac{\mathrm{i} {\rm{ \mathsf{ π} }} F_{\mathrm{w}}}{z / f}\right)\left(\frac{x}{w_{0}}\right)^{2}\right] $
(11) $ W_{x}=\operatorname{erf}\left(\sqrt{\alpha T}-\frac{Q x}{w_{0}}\right)+\operatorname{erf}\left(\sqrt{\alpha T}+\frac{Q x}{w_{0}}\right) $
(12) 式中,α=(a/w0)2和Fw=w02/(λf)分别是截断参量和光束相关的菲涅耳数,erf()是误差函数。最后由Imn(x, z, t)=|Emn(x, z, t)|2得到宽带厄米-高斯光束通过色散透镜的光强分布。
色散透镜系统中宽带厄米-高斯光束的焦移
Focal shift of polychromatic Hermite-Gaussian beams in dispersion lens system
-
摘要: 为了了解带宽对厄米-高斯光束的聚焦特性和焦移的影响,采用衍射积分推导了TEM11模和TEM22模厄米-高斯光束通过受光阑限制色散透镜的传输公式,并利用数值计算对聚焦光强分布进行了研究,分析了带宽对两种模式焦移的影响。结果表明,TEM11模和TEM22模厄米-高斯光束的焦移量都会随带宽增大而增大,但两者的大小依赖相对带宽;当相对带宽小于0.25时,TEM22模焦移量大于TEM11模焦移量,然而相对带宽大于0.25时,后者会稍大于前者;带宽变化使TEM22模轴上光强主极大和次极大发生消长,从而引起轴上光强极大位置发生跃变。该研究结果对宽带厄米-高斯光束的应用具有一定的参考价值。Abstract: In order to know effect of bandwidth on the focused properties and focal shift of Hermite-Gaussian (H-G) beam, propagation formula of H-G beams passing through a dispersion lens system with polychromatic TEM11 mode and TEM22 mode was obtained by using diffraction integral. The focused intensity distribution was studied by numerical calculation. The effect of bandwidth on focal shift of both modes were analyzed. The results show that the focal shifts of H-G beams with TEM11 mode and TEM22 mode increase with the increase of the bandwidth and depend on the relative bandwidth. Focal shift of TEM22 mode is greater than that of TEM11 mode when relative bandwidth is smaller than 0.25 whereas the latter is somewhat greater than the former when relative bandwidth exceeds 0.25. The principle maximum intensity and the secondary maximum intensity of TEM22 mode on the axis compete each other with the vary of bandwidth and then the axial primary maximum intensity transits from one place to another. The results are helpful for further application of the polychromatic H-G beams.
-
Key words:
- laser physics /
- focal shift /
- dispersion lens /
- bandwidth
-
-
[1] LI Y, WOLF E. Focal shifts in diffracted converging spherical waves[J]. Optics Communications, 1981, 39(4):211-215. doi: 10.1016/0030-4018(81)90108-5 [2] LI Y, WOLF E. Focal shift in focused truncated Gaussian beams[J]. Optics Communications, 1981, 42(3):151-156. [3] MARTÍNE-CORRAL M, CABALLERO M T, MUÑOZ-ESCRIVÁ L, et al. Focal-shift formula in apodized non-telecentric focusing systems[J]. Optics Letters, 2001, 26(19):1501-1504. doi: 10.1364/OL.26.001501 [4] KEIR C N, ELIO A A, STEVEN M B. Measurement of the effective focal shift in an optical trap[J]. Optics Letters, 2005, 30(22):1318-1320. [5] GHAFARY B, SIAMPOOR H, ALAVINEJAD M. Focal shift for off-axial partially coherent flat topped beams passing a thin lens[J]. Optics & Laser Technology, 2010, 42(5):755-759. [6] YUN M J, LIANG W, KONG W J, et al. Transverse superresolution and focal shift with rotational tunable phase mask[J]. Optics Communications, 2010, 283(10):2079-2083. doi: 10.1016/j.optcom.2010.01.039 [7] ALAVINEJAD M, ROWSHANI A R, GHAFARY B. Focal shift and focal switch of phase-lock partially coherent flat-topped array beams passing through an aligned and misaligned lens system with aperture[J]. Optics and Lasers in Engineering, 2012, 50(9):1341-1349. doi: 10.1016/j.optlaseng.2012.02.006 [8] YU Y T, ZAPPE H. Theory and implementation of focal shift of plasmonic lenses[J]. Optics Letters, 2012, 37(9):1592-1594. doi: 10.1364/OL.37.001592 [9] PENG R W, LI L, LI Y J, et al. Positive and negative focal shifts of an apertured supercontinuum laser with rectangular spectrum[J]. Optics Communications, 2012, 298/299(1):34-36. [10] PENG R W, LI L, LI Y J, et al. Effect of spectrum property on a focused supercontinuum laser[J]. Optics Communications, 2013, 309(15):26-29. [11] REN Zh Ch, QIAN Sh X, TU Ch H, et al. Focal shift in tightly focused Laguerre-Gaussian beams[J]. Optics Communications, 2015, 334(1):156-159. [12] PENG Ch B. Observation of focal point shift in solid immersion mi-rror[J]. Optics Express, 2015, 23(2):1498-1504. doi: 10.1364/OE.23.001498 [13] HE Sh M, WANG Zh H, LIU Q F, et al. Study of focal shift effect in planar GaN high contrast grating lenses[J]. Optics Express, 2015, 23(23):29360-29368. doi: 10.1364/OE.23.029360 [14] MA R, LI Y T, LIU Y M, et al. Focal shift of nano-optical lens a-ffected by periodic resonance with substrate[J]. IEEE Photonics Journal, 2016, 8(6):4502309. [15] ZHANG M H, CHEN Y H, LIU L, et al. Focal shift of a focused partially coherent Laguerre-Gaussian beam of all orders[J]. Journal of Modern Optics, 2016, 63(21):2226-2264. doi: 10.1080/09500340.2016.1191687 [16] ZHANG M H, CHEN Y H, CAI Y J, et al. Effect of the correlation function on the focal shift of a partially coherent beam[J]. Journal of the Optical Society of America, 2016, A33(12):2509-2515. [17] PENG J, CUI Zh F, QU J. Solution and focus property of the nonparaxial vector beams in the parabolic coordinates[J].Laser Technology, 2014, 38(5):703-708(in Chinese). [18] ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere[J]. Laser Technology, 2016, 40(5):750-755(in Chinese). [19] ZHANG B Y, PENG R W, ZHANG W. Bandwidth-induced focal switch in broadband laser with rectangular spectrum[J]. Laser Technology, 2017, 41(1):138-140(in Chinese). [20] ZHAO J H, WANG Q, ZHU B W, et al. Compact focusing properties of radial vector beam with vortex phase encoding[J]. Laser Technology, 2017, 41(2):187-190(in Chinese). [21] JI X L, ZHANG E T, LÜ B D. Spreading of spatially partially coherent polychromatic beams in atmospheric turbulence[J]. Optik, 2008, 119(14):689-694. doi: 10.1016/j.ijleo.2007.01.016 [22] MAO H D, ZHAO D M. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence[J]. Optics Express, 2010, 18(2):1741-1755. doi: 10.1364/OE.18.001741 [23] MALITSON I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 1965, 55(10):1205-1209. doi: 10.1364/JOSA.55.001205