-
基于F-P标准具和温补参考光栅的解调系统如图 1所示。该系统的光源是采用可调谐环形腔激光器。输出的光分别进入传感通道、参考通道以及F-P标准具通道。传感通道的波分复用器(wavelength division multiplexing, WDM)可以实现对多个通道的同时测量,达到分布式测量的目的。当传感光栅的布喇格波长等于可调谐F-P滤波器波长时,光电探测器(photodetector, PD)输出峰值信号。将PD, PD1和PD2输出的峰值信号经多路采集卡,传输到上位机,进行数据处理。本系统采用的是参考光栅、F-P标准具以及传感通道分开在3个单独的通道。参考光栅通过温度补偿封装,使光栅的波长随温度漂移量极低,温度系数可小于1pm/℃,所以参考光栅在不受应力的情况下,可忽略环境温度对波长的影响,用其来标定F-P标准具。
-
可调谐F-P滤波器的驱动电压与透射波长的关系曲线图如图 2所示。从图中可以看到,两次测量的可调谐F-P滤波器的驱动电压与透射波长是不同的曲线,无法拟合出单一曲线来表示它们的关系。虽然可调谐F-P滤波器的驱动电压与透射波长不成线性关系,但是可以对其进行分段处理,在较小段范围内,进行线性插值,就可以得到传感FBG的波长值,消除非线性的影响。
三角波驱动F-P腔时,激光器输出窄带光源,同时扫描传感通道、参考通道和标准具通道。当窄带光源与FBG的波长相等时,输出的光强最大,记录下此时所对应的驱动电压值。虽然F-P滤波器的透射波长与驱动电压不成线性,但是在F-P标准具的两个梳状齿之间的较小范围内,可以认为是线性的。已知参考光栅的波长为λ,驱动电压值为V,与它相邻的标准具的两个峰值点分别为Pi和Pi+1,驱动电压是已知的,分别为VPi和VPi+1,设波长分别为λPi和λPi+1,所以有方程:
$ \frac{{{\lambda }_{{{P}_{i+1}}}}-{{\lambda }_{{{P}_{i}}}}}{{{V}_{i+1}}-{{V}_{{{P}_{i}}}}}=\frac{\lambda -{{\lambda }_{{{P}_{i}}}}}{V-{{V}_{{{P}_{i}}}}}~ $
(1) 由于标准具的每两个峰值点之间的频率间隔为一个自由光谱范围(free spectral range, FSR)FFSR,所以:
$ {{F}_{\text{FSR}}}={{\lambda }_{{{P}_{i+1}}}}-{{\lambda }_{{{P}_{i}}}} $
(2) 标准具的峰值点Pi的波长为:
$ {{\lambda }_{{{P}_{i}}}}=\lambda +\frac{V-{{V}_{{{P}_{i}}}}}{{{V}_{{{P}_{i+1}}}}-{{V}_{{{P}_{i}}}}}\times {{F}_{\text{FSR}}} $
(3) 该系统选用的标准具的频率为100GHz,FSR为0.8nm。记峰值点Pi在标准具中的序号为k,则第n个峰值的波长为:
$ {{\lambda }_{n}}={{\lambda }_{{{P}_{i}}}}-\left( k-n \right){{F}_{\text{FSR}}} $
(4) 根据(4)式,标准具的所有峰值点的波长都可以计算出来。在传感通道上,滤波器输出的波长与传感光栅的中心波长相等时,会出现峰值输出,检测出此时所对应的驱动电压,并判断该电压在标准具中的具体位置,相邻的两个峰值的波长可以根据公式计算出。使用线性插值计算传感光栅的波长为:
$ {{\lambda }_{\text{B}}}=\frac{({{V}_{\text{B}}}-{{V}_{i}})\left( {{\lambda }_{i+1}}-{{\lambda }_{i}} \right)}{\left( {{V}_{i+1}}-{{V}_{i}} \right)}+{{\lambda }_{i}}~ $
(5) 式中,λB为Bragg光栅的中心波长;VB为传感光栅峰值输出对应的驱动电压值;Vi和Vi+1分别是相邻两个标准具峰值输出对应的驱动电压,满足Vi≤VB≤Vi+1;λi+1和λi是传感光栅相邻的两个标准具峰值的波长。
F-P标准具和参考光栅相结合的高稳定性FBG解调系统
High stability FBG demodulation system combining F-P etalon with reference grating
-
摘要: 为了提高光纤布喇格光栅(FBG)解调系统的稳定性和准确性,避免由于压电陶瓷的迟滞性、蠕变性以及温度变化引起的法布里-珀罗(F-P)滤波器驱动电压与透射波长不成线性的问题,采用了可调谐环形腔激光器作为扫描光源,与F-P标准具、温补参考光栅、传感光栅3个单独的通道结构相结合的FBG解调方法。通过理论分析和实验验证,选择中值滤波加滑动平均滤波的方法滤除噪声,采用基于强度阈值的频谱相关寻峰算法更加准确地找到反射谱峰值的位置。结果表明,每个通道单独分开的解调方案的波长长期稳定性可达0.4pm,温度与波长的线性度高于99.90%。该系统能够实现对温度、应变等参量的稳定性的测量。Abstract: In order to improve the stability and accuracy of a fiber Bragg grating(FBG) demodulation system and avoid the problem of nonlinearity of driving voltage and transmission wavelength of a Fabry-Perot(F-P) filter caused by hysteresis, vermicular and temperature changes of the piezoelectric ceramic, a FBG demodulation method was introduced combining with F-P etalon, temperature-compensated reference grating and sensing grating in three separate channels with a tunable ring cavity laser as scanning light source. The method of median filtering and moving average filtering was selected to filter the noise. A spectral correlation peak-seeking algorithm based on intensity threshold was used to find the location of peak value of reflection spectrum more accurately. Through theoretical analysis and experimental verification, the results show that wavelength long-term stability of demodulation scheme with each separated channel can reach 0.4pm and the linearity between temperature and wavelength is higher than 99.90%. The system can measure the stability of the parameters such as temperature and strain.
-
Key words:
- gratings /
- F-P filter /
- F-P etalon /
- reference grating /
- tunable ring cavity lasers
-
-
[1] BAI W, YANG M, DAI J, et al. Novel polyimide coated fiber Bragg grating sensing network for relative humidity measurements[J]. Optics Express, 2016, 24(4):3230-3237. doi: 10.1364/OE.24.003230 [2] ZHANG Y N, XIAO H, SHEN L Y. Coordinate point fitting for fiber grating curve reconstruction algorithm[J]. Optics and Precision Engineering, 2016, 24(9):2149-2157(in Chinese). doi: 10.3788/OPE. [3] YANG Y Q, YANG Q, GE W, et al. Temperature automatic compensation giant magnetostrictive material Bragg grating fiber current sensor[J].Optics and Precision Engineering, 2016, 24(10):2377-2383(in Chinese). doi: 10.3788/OPE. [4] RORIZ P, CARVALHO L, FRAZÃO O, et al. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications:a review[J]. Journal of Biomechanics, 2014, 47(6):1251-1261. doi: 10.1016/j.jbiomech.2014.01.054 [5] GUO Y X, XIONG L, KONG J Y, et al. Sliding fiber Bragg grating displacement sensor[J].Optics and Precision Engineering, 2017, 25(1):50-58(in Chinese). doi: 10.3788/OPE. [6] YI Z, DONG X P. Demodulation of the FBG temperature sensor with the tunable twin-core fiber[J]. Microwave and Optical Technology Letter, 2011, 53(1):81-84. doi: 10.1002/mop.v53:1 [7] ZHANG L, LIU Y M, GAO X L, et al. High temperature strain sensor based on a fiber Bragg rating and rhombus metal structure[J]. Applied Optics, 2015, 54(28):109-112. doi: 10.1364/AO.54.00E109 [8] PENG H, ZHOU B H, WANG H, et al. A new method for resolving the influence of circular birefringence in FBG weak pressure sensor[J]. Measurement, 2014, 58:280-285. doi: 10.1016/j.measurement.2014.08.050 [9] JIANG S C. Study of three-component FBG vibration sensor for simultaneous measurement of vibration, temperature, and verticality[J]. Journal of Sensors, 2015, 2015(29):1-9. [10] KERSEY A D, DAVIS M A, PATRICK H J. Fiber grating sensor[J]. Journal of Lightwave Technology, 1997, 15(8):1442-1463. doi: 10.1109/50.618377 [11] LI Y, ZHANG Sh L. A novel fiber Bragg grating sensor interrogation system utilizing a tunable Fabry-Perot filter[J]. Laser Technology, 2005, 29(3):237-240(in Chinese). [12] LIANG X, LIU T G, LIU K, et al. Method of real-time calibration for tunable optical filter nonlinearity[J]. Chinese Journal of Lasers, 2010, 37(6):1445-1449(in Chinese). doi: 10.3788/CJL [13] RIBEIRO B D A, WERNECK M M, SILVA-NETO J L D. Novel optimization algorithm to demodulate a PZT-FBG sensor in AC high voltage measurements[J]. IEEE Sensors Journal, 2013, 13(4):1259-1264. doi: 10.1109/JSEN.2012.2232290 [14] MEI J W, XIAO X Sh, YANG Ch X. Nonlinear optimization of scanning laser scanning and its application in fiber grating demodulation[J]. Optics and Precision Engineering, 2014, 22(11):2888-2893(in Chinese). doi: 10.3788/OPE. [15] LIU K, JING W C, PENG G D, et al. Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system[J]. Optics Communications, 2008, 281(12):3286-3290. doi: 10.1016/j.optcom.2008.02.034 [16] WANG P, ZHAO H, LIU J, et al. Dynamic real-time calibration method for fiber Bragg grating wavelength demodulation system based on tunable fabry-Perot filter[J]. Acta Optica Sinica, 2015, 35(8):0806006(in Chinese). doi: 10.3788/AOS [17] WANG J H, XU X M, DING J F, et al. Based on the method of Fabry-Perot etalon and calibration of the fiber Bragg grating wavelength demodulation system[J].Acta Photonica Sinica, 2016, 45(6):0606003(in Chinese). doi: 10.3788/gzxb [18] QIAO X G, WANG Y, FU H W, et al. High-accuracy real time calibration of tunable Fabry-Perot filter on large range[J]. Acta Optica Sinica, 2008, 28(5):852-855(in Chinese). doi: 10.3788/AOS [19] YANG G, XU G L, TU G J, et al. The high precision of FBG wavelength demodulation system based on spectrum partition[J].Chinese Journal of Lasers, 2015, 42(4):0405001(in Chinese). doi: 10.3788/CJL [20] LI Y Q, AN Y, YAO G Zh. The analysis and design of reference wavelength of FBG wavelength demodulation system[J].Optical Device, 2013, 8(4):11-14(in Chinese). [21] LI Zh Y, ZHOU Z D, TONG X L, et al. Research of high-speed large-capacity fiber Bragg grating demodulator[J]. Acta Optica Sini-ca, 2012, 32(3):306007(in Chinese). doi: 10.3788/AOS