-
石墨烯的性质主要由其电导率来决定,在高频情况下可采用Kubo模型来描述[15-16, 18],其表面电导率表示为σG(下标G表示石墨烯):
$ \begin{array}{*{20}{c}} {{\sigma _{\rm{G}}} = \frac{{{\rm{i}}{e^2}{k_{\rm{B}}}T}}{{{\rm{ \mathsf{ π} }}{\hbar ^2}\left( {\omega + {\rm{i}}/\tau } \right)}}\left[ {\frac{{{E_{\rm{F}}}}}{{{k_{\rm{B}}}T}} + 2\ln \left( {{{\rm{e}}^{ - \frac{{{E_{\rm{F}}}}}{{{k_{\rm{B}}}T}}}} + 1} \right)} \right] + }\\ {\frac{{{\rm{i}}{e^2}}}{{4{\rm{ \mathsf{ π} }}\hbar }}\ln \left| {\frac{{2{E_{\rm{F}}} - \left( {\omega + {\rm{i}}/\tau } \right)\hbar }}{{2{E_{\rm{F}}} + \left( {\omega + {\rm{i}}/\tau } \right)\hbar }}} \right|} \end{array} $
(1) 式中, ω是入射光角频率,e是电子的电量,$\hbar $是简约普朗克常数,kB是玻尔兹曼常数,T是温度,EF是费米能,τ是电子弛豫时间,i是虚数单位。石墨烯是单层原子结构,其厚度小于1nm。对单层石墨烯结构,电磁波入射到石墨烯表面经历的反射和透射行为与普通介质层明显不同,所以必须采取特殊的分析方法。参考文献[19]中从麦克斯韦方程组所要求的电磁场边界条件出发,借助传输矩阵方法推导出电磁波在石墨烯表面的传输规律。本文中利用同样的原理研究石墨烯与1维光子晶体的复合结构对光波的吸收规律。
石墨烯对电磁波特殊的作用表现在其电导率上。在电场作用下, 石墨烯产生表面电流,从而把电磁能量转化为其它形式的能量。为此在EF=0.45eV,T=300K, τ=0.25ps时, 画出石墨烯电导率的实部和虚部随频率的变化,如图 1所示。可以发现, 电导率的实部在0THz~20THz范围有较大的值,20THz以后迅速衰减。电导率的实部换算成介电常数时对应介电常数虚部,衡量吸收的大小。图 1中的结果为后面的研究提供了分析的基础。
设计模型如图 2所示。1维光子晶体由两种介质层A、B交替沿z轴分布而成,中间一层材料与A层相同,但厚度不同,在其中等距离嵌入n层石墨烯G,该层表示为C。介质层A和B的折射率和厚度分别为nA=2.5, dA=0.15mm, nB=1.5, dB=0.25mm。两介质层光学厚度相等,整个结构放置在空气背景介质中。上述结构参量的选取是为了使考虑的频谱落在0THz~ 20THz范围以内,在这个范围石墨烯的吸收最为明显。入射面为xz平面。对H极化电磁波,磁场只有y分量,在任一介质层内,电磁波是正反两个方向平面电磁波的叠加,表示为:
$ \begin{array}{*{20}{c}} {{H_y}\left( {x,z} \right) = {H_{0y}}^ + \exp \left[ {{\rm{i}}\left( {{k_x}x + {k_z}z} \right)} \right] + }\\ {{H_{0y}}^ - \exp \left[ {{\rm{i}}\left( {{k_x}x - {k_z}z} \right)} \right] = {H_y}^ + + {H_y}^ - } \end{array} $
(2) 式中,kx表示波矢的切向分量,在传输过程中保持不变; kz是波矢的z分量。由麦克斯韦方程可以推导对应的电场为x分量,表示为:
$ {E_x}\left( {x,z} \right) = \frac{{{k_z}}}{{\omega {\varepsilon _0}{\varepsilon _{\rm{r}}}}}{H_y}^ + - \frac{{{k_z}}}{{\omega {\varepsilon _0}{\varepsilon _{\rm{r}}}}}{H_y}^ - $
(3) 式中,ε0和εr分别是真空介电常数和介质的相对介电常数。当电磁波在两种普通介质层(分别用下标j和i表示)的界面过渡时,电场和磁场在切向(x, y方向)的分量均保持连续,用矩阵表示:
$ {\mathit{\boldsymbol{T}}_j}\left[ {\begin{array}{*{20}{c}} {H_{jy}^ + }\\ {H_{jy}^ - } \end{array}} \right] = {\mathit{\boldsymbol{T}}_i}\left[ {\begin{array}{*{20}{c}} {H_{iy}^ + }\\ {H_{iy}^ - } \end{array}} \right] $
(4) 式中, 是j(或i)层介质的折射率。于是有,其中$ {\mathit{\boldsymbol{T}}_{ji}} = {\mathit{\boldsymbol{T}}_j}^{ - 1}{\mathit{\boldsymbol{T}}_i}$称过渡矩阵。
在图 2所示的结构中,由于石墨烯的厚度小于1nm, 故可以把它看作是没有厚度的界面。当电磁波从j层经过石墨烯过渡到i层时,由于石墨烯存在表面电流,导致磁场的切向不再连续,如图 3所示。
边界过渡条件变为:
$ \oint {\mathit{\boldsymbol{H}} \cdot d\mathit{\boldsymbol{l}}} = \left( {{H_{jy}} - {H_{iy}}} \right)\Delta l = {\sigma _{\rm{G}}}{E_{ix}}\Delta l $
(5) (5) 式左边是磁场沿图 3中矩形闭合回路的环量积分。结合(3)式有:
$ \begin{array}{*{20}{c}} {H_{jy}^ + + H_{jy}^ - = H_{iy}^ + + H_{iy}^ - + {\sigma _{\rm{G}}}{E_{ix}} = }\\ {\left( {1 + {\sigma _{\rm{G}}}\frac{{{k_{iz}}}}{{\omega {\varepsilon _0}n_i^2}}} \right)H_{iy}^ + + \left( {1 - {\sigma _{\rm{G}}}\frac{{{k_{iz}}}}{{\omega {\varepsilon _0}n_i^2}}} \right)H_{iy}^ - } \end{array} $
(6) 于是(4)式变形为:
$ \begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} 1&1\\ {\frac{{{k_{jz}}}}{{n_j^2}}}&{ - \frac{{{k_{jz}}}}{{n_j^2}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {H_{jy}^ + }\\ {H_{jy}^ - } \end{array}} \right] = }\\ {\left[ {\begin{array}{*{20}{c}} {1 + {\sigma _{\rm{G}}}\frac{{{k_{iz}}}}{{\omega {\varepsilon _0}n_i^2}}}&{1 - {\sigma _{\rm{G}}}\frac{{{k_{iz}}}}{{\omega {\varepsilon _0}n_i^2}}}\\ {\frac{{{k_{iz}}}}{{n_i^2}}}&{ - \frac{{{k_{iz}}}}{{n_i^2}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {H_{iy}^ + }\\ {H_{iy}^ - } \end{array}} \right]} \end{array} $
(7) 此时过渡矩阵$ {\mathit{\boldsymbol{T}}_{ji}} = {\mathit{\boldsymbol{T}}_j}^{ - 1}{\mathit{\boldsymbol{T}}_i}$与不存在石墨烯的情况完全不同。在图 2结构处于空气背景中(j=0),电磁波前后界面处的入射场Hin、反射场Hr和透射场Ht的关系可以通过以下矩阵计算:
$ \begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} {{H_{{\rm{in}}}}}\\ {{H_{\rm{r}}}} \end{array}} \right] = {\mathit{\boldsymbol{T}}_{{\rm{0A}}}}{{\left( {{\mathit{\boldsymbol{P}}_{\rm{A}}}{\mathit{\boldsymbol{T}}_{{\rm{AB}}}}{\mathit{\boldsymbol{P}}_{\rm{B}}}{\mathit{\boldsymbol{T}}_{{\rm{BA}}}}} \right)}^N}{\mathit{\boldsymbol{P}}_{\rm{A}}}{\mathit{\boldsymbol{T}}_{{\rm{AC}}}}{\mathit{\boldsymbol{P}}_{\rm{C}}}{\mathit{\boldsymbol{T}}_{{\rm{CA}}}} \times }\\ {{{\left( {{\mathit{\boldsymbol{P}}_{\rm{A}}}{\mathit{\boldsymbol{T}}_{{\rm{AB}}}}{\mathit{\boldsymbol{P}}_{\rm{B}}}{\mathit{\boldsymbol{T}}_{{\rm{BA}}}}} \right)}^N}{\mathit{\boldsymbol{T}}_{{\rm{A0}}}}\left[ {\begin{array}{*{20}{c}} {{H_{\rm{t}}}}\\ 0 \end{array}} \right] = \mathit{\boldsymbol{M}}\left[ {\begin{array}{*{20}{c}} {{H_{\rm{t}}}}\\ 0 \end{array}} \right]} \end{array} $
(8) 式中, 表示j层内正反两个方向平面电磁波相位的变化, dj是j介质层厚度,N为结构周期。由此得到结构透射率t、反射率r和吸收率A计算公式:
$ t = {\left| {\frac{{{H_{\rm{t}}}}}{{{H_{{\rm{in}}}}}}} \right|^2} = \frac{1}{{{{\left| {M\left( {1,1} \right)} \right|}^2}}} $
(9) $ r = {\left| {\frac{{{H_{\rm{r}}}}}{{{H_{{\rm{in}}}}}}} \right|^2} = \frac{{{{\left| {M\left( {2,1} \right)} \right|}^2}}}{{{{\left| {M\left( {1,1} \right)} \right|}^2}}} $
(10) $ A = 1 - t - r $
(11)
基于石墨烯和1维光子晶体的THz宽带吸收器
Broadband THz absorbers based on graphene and 1-D photonic crystal
-
摘要: 为了获得宽带高效率光波吸收器,设计了石墨烯和1维光子晶体的复合结构,采用修正的传输矩阵法研究了其传输特性。结果表明,在一定条件下,复合结构在太赫兹波段具有一定带宽和高效率的吸收带,吸收带的位置和宽度与1维光子晶体通带一致;在一些特别的吸收带,吸收峰值达到1;对相同的结构吸收结果还与入射方向有关。石墨烯和1维光子晶体的结合进一步拓展了它们的应用范围。Abstract: In order to obtain broadband high efficiency optical absorbers, the composite structure of graphene and 1-D photonic crystal was designed. The modified transfer matrix method was used to study the transmission characteristics. The results show that under certain conditions, the composite structure has a certain bandwidth and high efficiency absorption band in the terahertz band. The position and width of absorption band are consistent with the pass band of 1-D photonic crystal. In some special absorption bands, absorption peak reaches 1. For the same structure, absorption is also related to the incident direction. The combination of grapheme and 1-D photonic crystals further expands the range of applications.
-
Key words:
- optoelectronics /
- graphene /
- 1-D photonic crystal /
- absorption
-
-
[1] ATWATER H A, POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3):205-213. doi: 10.1038/nmat2629 [2] SAI H, YUGAMI H, KANAMORI Y, et al. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion[J]. Solar Energy Materials and Solar Cells, 2003, 79(1):35-49. doi: 10.1016/S0927-0248(02)00364-1 [3] WANG L P, ZHANG Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics[J]. Applied Physics Letters, 2012, 100(6):063902. doi: 10.1063/1.3684874 [4] LIU N, MESCH M, WEISS T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7):2342-2348. doi: 10.1021/nl9041033 [5] LI Y Q, SU L, WANG B B, et al. Optical properties of cross-shaped array optical absorber in the infrared region[J]. Acta Optica Sinica, 2014, 34(1):0123002(in Chinese). doi: 10.3788/AOS [6] LEE J, ZHANG Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics[J]. Journal Applied Physics, 2006, 100(6):063529. doi: 10.1063/1.2349472 [7] NARAYANASWAMY A, CHEN G. Thermal emission control with one-dimensional metallodielectric photonic crystals[J]. Physical Review, 2004, B70(70):2516-2528. [8] MATTIUCCI N, BLOEMER M J, AKÖZBEK N, et al. Impedance matched thin metamaterials make metals absorbing[J]. Scientific Report, 2013, 3(11):3203. [9] LU S Q, CHAO X G, CHEN X F, et al. TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure[J]. Acta Optica Sinica, 2015, 35(1):0116003(in Chinese). doi: 10.3788/AOS [10] ZHAO D, MENG L, GONG H, et al. Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina[J]. Applied Physics Letters, 2014, 104(22):221107. doi: 10.1063/1.4881267 [11] GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11):749-758. doi: 10.1038/nphoton.2012.262 [12] LIU M, YIN X B, ULIN-AVILA E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349):64-67. doi: 10.1038/nature10067 [13] LIU J T, LIU N H, LI J, et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Applied Physics Letters, 2012, 101(5):052104. doi: 10.1063/1.4740261 [14] XIE L Y, XIAO W B, HUANG G Q, et al. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal[J]. Acta Physica Sinica, 2014, 63(5):057803(in Chinese). [15] XIANG Y J, DAI X Y, GUO J, et al. Critical coupling with graphene-based hyperbolic metamaterials[J]. Scientific Reports, 2014, 4:5483 [16] NEFEDOV I S, VALAGINNOPOULOS C A, MELNIKOV L A. Perfect absorption in graphene multilayers[J]. Journal of Optics, 2013, 15(11):990-996. [17] NING R X, LIU Sh B, ZHANG H F, et al. Electromagnetic absorption characteristics of 1-D grapheme photonic crystals[J]. Laser Technology, 2015, 39(1):28-32(in Chinese). [18] HANSON G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of grapheme[J]. Journal of Applied Physics, 2007, 103(6):064302. [19] DENG X H, LIU J T, YUAN J R, et al. Tunable terahertz photonic crystal structures containing graphene[J]. Acta Physica Sinica, 2015, 64(7):057801(in Chinese).