[1] DRISCOLL T, ANDREEV G O, BASOV D N, et al. Tuned perme-ability in terahertz split-ring resonators for devices and sensors. Applied Physics Letters, 2007, 91(6): 062511. doi: 10.1063/1.2768300
[2] DENG H C, JIANG X W, HUANG X X, et al. A temperature sensor based on composite optical waveguide[J]. Journal of Lightwave Technology, 2022, 40(8): 2663-2669. doi: 10.1109/JLT.2022.3141760
[3] TIAN X Y, LI L W, CHEW S X, et al. Cascaded optical microring resonator based auto-correction assisted high resolution microwave photonic sensor[J]. Journal of Lightwave Technology, 2021, 39(24): 7646-7655. doi: 10.1109/JLT.2021.3095336
[4] ZHANG Y Y, ZHANG J H, LI Y N, et al. An optical intense 2D electric field sensor using a single LiNO3 crystal[J]. Current Optics and Photonics, 2022, 6(2): 183-190.
[5] WOO B H, SEO I C, LEE E, et al. Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films[J]. Optics Express, 2017, 25(23): 28619-28629. doi: 10.1364/OE.25.028619
[6] YILDIRIM D U, GHOBADI A, SOYOAN M C, et al. One-way and near-absolute polarization insensitive near perfect absorption by using an all dielectric metasurface[J]. Optics Letters, 2020, 45(7): 2010-2013. doi: 10.1364/OL.387350
[7] 于海洪. 偏振敏感超材料吸波体结构与性能研究[D]. 长春: 吉林大学, 2021: 23-34.YU H H. Study on structure and properties of polarization-sensitive metamaterial absorber[D]. Changchun: Jilin University, 2021: 23-34(in Chinese).
[8] 王瑞. 亚波长微偏振光栅探测器的研制方法及其偏振特性研究[D]. 上海: 中国科学院上海技术物理研究所, 2016: 21-28.WANG R. Research on fabrication and characterization of subwavelength metallic grating-based polarimetric sensor[D]. Shanghai: Shanghai Institute of Technical Physics Chinese Academy of Sciences, 2016: 21-28(in Chinese).
[9] 王鹏飞, 贺风艳, 刘建军, 等. 基于连续谱束缚态的高Q太赫兹全介质超表面[J]. 激光技术, 2022, 46(5): 630-635.WANG P F, HE F Y, LIU J J, et al. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technology, 2022, 46(5): 630-635(in Chinese).
[10] ALAEE R, FARHAT M, ROCKSTUHL C, et al. A perfect absorber made of a graphene micro-ribbon metamaterial[J]. Optics Express, 2012, 20(27): 28017-28024. doi: 10.1364/OE.20.028017
[11] AKHAVAN A, ABDOLHOSSEINI S, GHAFOORIFARD H, et al. Narrow band total absorber at near-infrared wavelengths using monolayer graphene and sub-wavelength grating based on critical coupling[J]. Journal of Lightwave Technology, 2018, 36(23): 5593-5599. doi: 10.1109/JLT.2018.2876374
[12] 邵雅斌. 几种二维材料的光学非线性吸收及载流子动力学研究[D]. 哈尔滨: 黑龙江大学, 2021: 11-14.SHAO Y B. Investigation on optical nonlinear absorption and carrier dynamics of several 2D materials[D]. Harbin: Heilongjiang University, 2021: 11-14(in Chinese).
[13] 李双銮. 新型黑磷可调谐太赫兹调制器研究[D]. 西安: 西安科技大学, 2021: 10-12.LI Sh L. Research on the novel tunable terahertz modulator of black phosphorus[D]. Xi'an: Xi'an University of Science and Technology, 2021: 10-12(in Chinese).
[14] TANG B, YANG N G, HUANG L, et al. Tunable anisotropic perfect enhancement absorption in black phosphorus-based metasurfaces[J]. IEEE Photonics Journal, 2020, 12(3): 4500209.
[15] DONG D X, LIU Y W, FEI Y, et al. Designing a nearly perfect infrared absorber in monolayer black phosphorus[J]. Applied Optics, 2019, 58(14): 3862-3869. doi: 10.1364/AO.58.003862
[16] WANG J, JIANG Y N, HU Zh R. Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials[J]. Optics Express, 2017, 25(18): 22149-22157. doi: 10.1364/OE.25.022149
[17] DAI X Y, CHEN H, QIU Ch Y, et al. Ultrasensitive multiple guided-mode biosensor with few-layer black phosphorus[J]. Journal of Lightwave Technology, 2020, 38(6): 1564-1571. doi: 10.1109/JLT.2019.2954168
[18] CAI Y J, XU K D, FENG N X, et al. Anisotropic infrared plasmo-nic broadband absorber based on graphene-black phosphorus multilayers[J]. Optics Express, 2020, 27(3): 3101-3112.
[19] ZHU Y Q, TANG B, JIANG Ch. Tunable ultra-broadband anisotropic absorbers based on multi-layer black phosphorus ribbons[J]. Applied Physics Express, 2019, 12(3), 032009. doi: 10.7567/1882-0786/aaffe6
[20] KHALILZADEH H, SHARIF A H, ANVARHAGHIGAI N. Design of a broadband infrared absorber based on multiple layers of black phosphorus nanoribbons[J]. Journal of the Optical Society of America, 2021, B38(12): 3920-3928.
[21] WANG Sh Q, LI Sh L, ZHOU Y G, et al. Enhanced terahertz modulation using a plasmonic perfect absorber based on black phosphorus[J]. Applied Optics, 2020, 59(29): 9279-9283. doi: 10.1364/AO.402639
[22] XIAO Sh Y, LIU T T, CHENG L, et al. Tunable anisotropic absorption in hyperbolic metamaterials based on black phosphorous/dielectric multilayer structures[J]. Journal of Lightwave Technology, 2019, 37(13): 3290-3297. doi: 10.1109/JLT.2019.2914183
[23] HE Zh H, LU H, ZHAO J L. Polarization independent and non-reciprocal absorption in multi-layer anisotropic black phosphorus metamaterials[J]. Optics Express, 2021, 29(14): 21336-21347. doi: 10.1364/OE.430038
[24] WU Sh W, JIAN R D, XIONG G P. High-performance polarization-independent black phosphorus refractive index sensors enabled by a single-layer pattern design[J]. Optics Letters, 2022, 47(3): 517-520. doi: 10.1364/OL.447593
[25] 方昱玮. 新型液体染料激光器的研究[D]. 合肥: 中国科学技术大学, 2021: 3-10.FANG Y W. Study on new liquid dye laser[D]. Hefei: University of Science and Technology of China, 2021: 3-10(in Chinese).
[26] LIN C, GRASSI R, LOW T, et al. Multilayer black phosphorus as a versatile mid-infrared electro-optic material[J]. Nano Letters, 2016, 16(3): 1683-1689. doi: 10.1021/acs.nanolett.5b04594
[27] CAI Y J, LI Sh L, ZHOU Y G, et al. Investigation of multi-resonant and anisotropic plasmonic resonances in the stacked graphene-black phosphorus bilayers[J]. Journal of Physics D: Applied Physics, 2020, 53(2): 025107. doi: 10.1088/1361-6463/ab4eea
[28] FAN Sh H, SUH W J, JOANNOPOULOS J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America, 2003, A20(3): 569-572.
[29] LIU T T, JIANG X J, ZHOU Ch B, et al. Black phosphorus-based anisotropic absorption structure in the mid-infrared[J]. Optics Express, 2019, 27(20): 27618-27627. doi: 10.1364/OE.27.027618
[30] 庞慧中, 王鑫, 王俊林, 等. 双频带太赫兹超材料吸波体传感器传感特性[J]. 物理学报, 2021, 70(16): 168101.PANG H Zh, WANG X, WANG J L, et al. Sensing characteristics of dual band terahertz metamaterial absorber sensor[J]. Acta Physica Sinica, 2021, 70(16): 168101(in Chinese).
[31] ZHANG J J, ZHANG Zh J, SONG X X, et al. Infrared plasmonic sensing with anisotropic two-dimensional material borophene[J]. Nanomaterials, 2021, 11(5): 1165. doi: 10.3390/nano11051165
[32] 张俊傲, 李国民, 周远国, 等. 基于黑磷的多共振折射率传感器研究[J]. 空军工程大学学报(自然科学版), 2022, 23(1): 43-48.ZHANG J A, LI G M, ZHOU Y G, et al. Research on multi-resonant refractive index sensor based on black phosphorus[J]. Journal of Air Force Engineering University (Natural Science Edition), 2022, 23(1): 43-48(in Chinese).
[33] ZHOU R L, PENG J, YANG S, et al. Lifetime and nonlinearity of modulated surface plasmon for black phosphorus sensing application[J]. Nanoscale, 2018, 10: 18878-18891. doi: 10.1039/C8NR06796A
[34] CHEN H, XIONG L, HU F R, et al. Ultrasensitive and tunable sensor based on plasmon-induced transparency in a black phosphorus metasurface[J]. Plasmonics, 2021, 16(4): 1071-1077. doi: 10.1007/s11468-021-01374-0
[35] LIU Ch, LI H J, XU H, et al. Plasmonic biosensor based on excellently absorbable adjustable plasmon-induced transparency in black phosphorus and graphene metamaterials[J]. New Journal of Physics, 2020, 22: 073049. doi: 10.1088/1367-2630/ab9b58
[36] SHEN H Y, LIU Ch Y, LIU F X. et al. Multi-band plasmonic absorber based on hybrid metal-graphene metasurface for refractive index sensing application[J]. Results in Physics, 2021, 23: 104020. doi: 10.1016/j.rinp.2021.104020
[37] JIANG X P, CHEN D B, ZHANG Zh J, et al. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface[J]. Optics Express, 2020, 28(23): 34079-34092. doi: 10.1364/OE.412442
[38] QIU C Y, WU J H, ZHU R R, et al. Dual-band near-perfect metamaterial absorber based on cylinder MoS2-dielectric arrays for sensors[J]. Optics Communications, 2019, 451: 226-230. doi: 10.1016/j.optcom.2019.06.067