[1] 贺思远. 纳通道中颗粒的输运与检测研究[D]. 北京: 中国科学院大学, 2016: 3-30.HE S Y. The transport and detection of nanoparticle in nanochannel[D]. Beijing: University of Chinese Academy of Sciences, 2016: 3-30 (in Chinese).
[2] JOENSSON H N, SVAHN H A. Droplet microfluidics-a tool for single-cell analysis[J]. Angewandte Chemie International Edition, 2012, 51(49): 12176-12192. doi: 10.1002/anie.201200460
[3] EIJKEL J C T, BERG A V D. Nanofluidics: What is it and what can we expect from it[J]. Microfluidics and Nanofluidics, 2005, 1(3): 249-267. doi: 10.1007/s10404-004-0012-9
[4] SCHOCH R B, HAN J, RENAUD P. Transport phenomena in nanofluidics[J]. Reviews of Modern Physics, 2008, 80(3): 839-883. doi: 10.1103/RevModPhys.80.839
[5] NAIR P R, WU H A, JAYARAM A P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. doi: 10.1126/science.1211694
[6] HOLT J K, GYU P H, WANG Y, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776): 1034-1037. doi: 10.1126/science.1126298
[7] HUMMER G, RASAIAH J C, NOWORYTAO J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. doi: 10.1038/35102535
[8] SECCHI E, MARBACH S, NIGUōS A, et al. Massive radius-dependent flow slippage in carbon nanotubes[J]. Nature, 2016, 537(7619): 210-213. doi: 10.1038/nature19315
[9] FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536(7615): 197-200. doi: 10.1038/nature18593
[10] FEBG J, LIU K, GRAF M, et al. Observation of ionic Coulomb blockade in nanopores[J]. Nature Materials, 2016, 15(8): 850-855. doi: 10.1038/nmat4607
[11] OU X, YU Y, WU R, et al. Shuttle suppression by polymer-sealed graphene-coated polypropylene separator[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5534-5542.
[12] NAIR P R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight gra phene-based membranes[J]. Science, 2012, 335(6067): 442-444. doi: 10.1126/science.1211694
[13] ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nature Nanotechnology, 2017, 12(6): 546-550. doi: 10.1038/nnano.2017.21
[14] YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16(12): 1198-1202. doi: 10.1038/nmat5025
[15] CHEN L, SHI G, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550(7676): 380-383. doi: 10.1038/nature24044
[16] STEIN D, KRUITHOF M, DEKKER C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3): 035901. doi: 10.1103/PhysRevLett.93.035901
[17] MARTINS D, CHU V, PRAZERES D M F, et al. Ionic conductivity measurements in a SiO2 nanochannel with PDMS interconnects[J]. Procedia Chemistry, 2009, 1(1): 1095-1098. doi: 10.1016/j.proche.2009.07.273
[18] DUAN C, MAJUMDAR A. Anomalous ion transport in 2-nm hydrophilic nanochannels[J]. Nature Nanotechnology, 2010, 5(12): 848-852. doi: 10.1038/nnano.2010.233
[19] XIE Q, ALIBAKHSHI M A, JIAO S, et al. Fast water transport in graphene nanofluidic channels[J]. Nature Nanotechnology, 2018, 13(3): 238-245. doi: 10.1038/s41565-017-0031-9
[20] 王奉超, 朱银波, 吴恒安. 纳米通道受限液体的结构和输运[J]. 中国科学: 物理学力学天文学, 2018, 48(9): 094609.WANG F Ch, ZHU Y B, WU H A. Structure and transport of confined liquid in nanochannels[J]. Scientia Sinica (Physica, Mecha-nica & Astronomica), 2018, 48(9): 094609(in Chinese).
[21] OYAZUA E, WALTHER J H, MEGARIDIS C M, et al. Carbon nanotubes as thermally induced water pumps[J]. ACS Nano, 2017, 11(10): 9997-10002. doi: 10.1021/acsnano.7b04177
[22] REGAN B C, ALONI S, RITCHIE R O, et al. Carbon nanotubes as nanoscale mass conveyors[J]. Nature, 2004, 428(6986): 924-927. doi: 10.1038/nature02496
[23] AMELIA B, RICCARDO R, EDUARDO R, et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes[J]. Science, 2008, 320(5877): 775-778. doi: 10.1126/science.1155559
[24] SUN Y M, PAN L J, LIU Y L, et al. Micro-bubble generated by laser irradiation on an individual carbon nanocoil[J]. Applied Surface Science, 2015, 345: 428-432. doi: 10.1016/j.apsusc.2015.03.153
[25] 刘玉丽. 单根碳纳米线圈上的激光光力、光热转换及其应用的研究[D]. 大连: 大连理工大学, 2012: 26-52.LIY Y L. Photo-thermal and light to force conversions in single carbon nanocoils and their applications[D]. Dalian: Dalian University of Technology, 2012: 26-52(in Chinese).
[26] 尹培琪, 王新兵, 武耀星, 等. 脉冲Nd∶YAG激光诱导水滴等离子体的实验研究[J]. 激光技术, 2020, 44(6): 726-731.YIN P Q, WANG X B, WU Y X, et al. Experimental study on water droplet plasma indu ced by pulse Nd∶YAG laser[J]. Laser Technology, 2020, 44(6): 726-731(in Chinese).
[27] 罗贤锋, 游利兵, 徐健, 等. 基于激光诱导击穿光谱的元素成像技术研究进展[J]. 激光技术, 2020, 44(1): 66-73.LUO X F, YOU L B, XU J, et al. Research progress of elemental imaging based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2020, 44(1): 66-73(in Chinese).
[28] ZHAO Y P, WANG J Zh, HUANG H, et al. Growth of carbon nanocoils by porous α-Fe2O3/SnO2 catalyst and its buckypaper for high efficient adsorption[J]. Nano-Micro Letters, 2020, 12(2): 141-157.
[29] 魏巍. 含纳米颗粒石蜡光学特性及其太阳能吸收性能初探[D]. 大庆: 东北石油大学, 2019: 15-20.WEI W. Research on optical properties and solar absorption properties of nanoparticle-containing paraffin[D]. Daqing: Northeast Petroleum University, 2019: 15-20(in Chinese).
[30] MA H, PAN L J, ZHAO Q, et al. Thermal conductivity of a single carbon nanocoil measured by field-emission induced thermal radiation[J]. Carbon, 2011, 50(3): 778-783.
[31] 王鹏. 碳纳米线圈的光力、光热特性研究及其作为柔性探针的应用[D]. 大连: 大连理工大学, 2019: 10-40.WANG P. Research on opt-mechanical and opt-thermal properties of carbon nanocoils and their applications as flexible probes[D]. Dalian: Dalian University of Technology, 2019: 10-40(in Ch-inese).
[32] 胡定华, 许肖永, 林肯, 等. 石蜡/膨胀石墨/石墨片复合相变材料导热性能研究[J]. 工程热物理学报, 2021, 42(9): 2414-2418.HU D H, XU X Y, LIN K, et al. Study on heat conductivity of para-ffffin/expanded graphite/graphite sheet composite material[J]. Journal of Engineering Thermophysics, 2021, 42(9): 2414-2418 (in Chinese).
[33] WANG P, PAN L J, LI Ch W, et al. Highly efficient near-infrared photothermal conversion of a single carbon nanocoil indicated by cell ejection[J]. Journal of Physical Chemistry, 2018, C122(48): 27696-27701.
[34] DARHUBER A A, VALENTNO J P, TROIAN S M, et al. Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays[J]. Journal of Microelectromechanical Systems, 2003, 12(6): 873-879.
[35] 钟源. 液滴撞击不同固体表面动力学特性及热毛细迁移研究[D]. 南昌: 南昌大学, 2019: 39-442.ZHONG Y. Research on dynamic characteristics of droplets impacting different solid surfaces and thermocapillary migration[D]. Nanchang: Nanchang University, 2019: 39-442(in Chinese).
[36] 高世桥, 刘海鹏. 毛细力学[M]. 北京: 科学出版社, 2010: 32-36.GAO Sh Q, LIU H P. Capillary mechanics[M]. Beijing: Science Press, 2010: 32-36(in Chinese).
[37] METTU S, CHAUDHURY M K. Motion of drops on a surface induced by thermal gradient and vibration[J]. Langmuir, 2008, 24(19): 10833-10837.