[1] |
LI Y B, LIU Ch, ZHAN Y, et al. Research progress in Sb-based superlattice infrared detectors[J]. Research & Progress of SSE, 2010, 30(1):11-17(in Chinese). |
[2] |
WANG G W, XU Y Q, NIU Zh Ch. Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Cha-llenges and solutions[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(4):368-389(in Chinese). |
[3] |
ROGALSKI A. Material considerations for third generation infrared photon detectors[J]. Infrared Physics & Technology, 2007, 50(2/3):240-252. |
[4] |
LIU Ch, ZENG Y P. Application research and development in Sb-based Ⅲ-Ⅴ compound semiconductor material and device[J]. Semiconductor Technology, 2009, 34(6):525-530(in Chinese). |
[5] |
BENNETT B R, MAGNO R, BOOS J B, et al. Antimonide-based compound semiconductors for electronic devices: A review[J]. Solid-State Electronics, 2005, 49(12):1875-1895. doi: 10.1016/j.sse.2005.09.008 |
[6] |
SAI-HALASZ G A, ESAKI L, HARRISON W A. InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition[J]. Physical Review, 1978, B18(6):2812-2818. doi: 10.1103/PhysRevB.18.2812 |
[7] |
ELENA A P. InAs/GaSb type-Ⅱ superlattice detectors[J]. Advances in Electronics, 2014, 2014:246769. doi: 10.1155/2014/246769 |
[8] |
SHI Y L. Type-Ⅱ InAs/GaInSb superlattices infrared detectors-one of the best choices as the third generation infrared detectors[J]. Infrared Technology, 2011, 33(11): 621-624(in Chinese). |
[9] |
ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009, 105(9):091101-091144. doi: 10.1063/1.3099572 |
[10] |
SONG Sh F, GONG F, ZHOU L Q. Progress of InAs/GaSb type Ⅱ super-lattice infrared detector[J]. Laser & Infrared, 2014, 44(2): 117-121(in Chinese). |
[11] |
NGUYEN B M, HOFFMAN D, WEI Y, et al. Very high quantum efficiency in type-Ⅱ InAs/GaSb superlattice photodiode with cutoff of 12μm[J]. Applied Physics Letters, 2007, 90(23):2318. |
[12] |
WALTHER M, REHM R, SCHMITZ J, et al. InAs/GaSb type Ⅱ superlattices for advanced 2nd and 3rd generation detectors[J]. Proceedings of the SPIE, 2010, 7608: 76081Z. doi: 10.1117/12.842065 |
[13] |
AIFER E H, TISCHLER J G, WARNER J H, et al. W-structured type-Ⅱ superlattice long-wave infrared photodiodes with high quantum efficiency[J]. Applied Physics Letters, 2006, 89(5):53519. doi: 10.1063/1.2335509 |
[14] |
VURGAFTMAN I, AIFER E H, CANEDY C L, et al. Graded band gap for dark-current suppression in long-wave infrared W-structured type-Ⅱ superlattice photodiodes[J]. Applied Physics Letters, 2006, 89(12):121114. doi: 10.1063/1.2356697 |
[15] |
NGUYEN B M, RAZEGHI M, NATHAN V, et al. Type-Ⅱ M structure photodiodes: An alternative material design for mid-wave to long wavelength infrared regimes[J]. Proceedings of the SPIE, 2007, 6479:64790S. doi: 10.1117/12.711588 |
[16] |
NGUYEN B, HOFFMAN D, DELAUNAY P, et al. Dark current suppression in type Ⅱ InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier[J]. Applied Physics Le-tters, 2007, 91(16):163511. doi: 10.1063/1.2800808 |
[17] |
NGUYEN B M, HOFFMAN D, DELAUNAY P Y, et al. Band edge tunability of M-structure for heterojunction design in Sb based type Ⅱ superlattice photodiodes[J]. Applied Physics Letters, 2008, 93(16):163502. doi: 10.1063/1.3005196 |
[18] |
HOFFMAN D, NGUYEN B M, HUANG K W, et al. The effect of doping the M-barrier in very long-wave type-Ⅱ InAs/GaSb heterodiodes[J]. Applied Physics Letters, 2008, 93(3):031107. doi: 10.1063/1.2963980 |
[19] |
DELAUNAY P Y, RAZEGHI M. High-performance focal plane a-rray based on type-Ⅱ InAs/GaSb superlattice heterostructures[J]. Proceedings of the SPIE, 2008, 6900:69000M. doi: 10.1117/12.776257 |
[20] |
TING Z Y, HILL C J, SOIBEL A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Applied Physics Letters, 2009, 95(2):023508. doi: 10.1063/1.3177333 |
[21] |
GAUTAM N, KIM H S, KUTTY M N, et al. Performance improvement of longwave infrared photodetector based on type-Ⅱ InAs/GaSb superlattices using unipolar current blocking layers[J]. Applied Physics Letters, 2010, 96(23):231107. doi: 10.1063/1.3446967 |
[22] |
RODRIGUEZ J B, PLIS E, BISHOP G, et al. nBn structure based on InAs/GaSb type-Ⅱ strained layer superlattices[J]. Applied Physics Letters, 2007, 91(4):39-41. |
[23] |
NGUYEN B, BOGDANOV S, POUR S A, et al. Minority electron unipolar photodetectors based on type Ⅱ InAs/GaSb/AlSb superla-ttices for very long wavelength infrared detection[J]. Proceedings of the SPIE, 2009, 7608:760825. |
[24] |
KHOSHAKHLAGH A, MYERS S, KIM H S, et al. Long-wave InAs/GaSb superlattice detectors based on nBn and pin designs[J]. IEEE Journal of Quantum Electronics, 2010, 46(6):959-964. doi: 10.1109/JQE.2010.2041635 |
[25] |
MARTYNIUK P, WRÓBEL J, PLIS E, et al. Modeling of midwavelength infrared InAs/GaSb type Ⅱ superlattice detectors[J]. Optical Engineering, 2013, 52(6):061307. doi: 10.1117/1.OE.52.6.061307 |
[26] |
RAZEGHI M, HUANG K W, NGUYEN B M, et al. Type-Ⅱ antimonide-based superlattices for the third generation infrared focal plane arrays[J]. Proceedings of the SPIE, 2010, 7660:76601F. |
[27] |
HAN X, XIANG W, HAO H Y, et al. Very long wavelength infrared focal plane arrays with 50% cutoff wavelength based on type-Ⅱ InAs/GaSb superlattice[J]. Chinese Physics, 2017, B26(1):018505. |
[28] |
ARASH D, ABBAS H, ROMAIN C, et al. NBN extended short-wavelength infrared focal plane array[J]. Optics Letters, 2018, 43(3):591-594. doi: 10.1364/OL.43.000591 |
[29] |
LI Y, XIAO W L, WU L Y, et al. Dark current characteristic of p-i-n and nBn MWIR InAs/GaSb superlattice infrared detectors[C]//IEEE Optoelectronics Global Conference. New York, USA: IEEE, 2019: 70-75. |
[30] |
MIURA S, MIKAWA T, KUWATSUKA H, et al. AlGaSb avalanche photodiode exhibiting a very low excess noise factor[J]. A-pplied Physics Letters, 1989, 54(24):2422-2423. doi: 10.1063/1.101095 |
[31] |
DUERR E K, MANFRA M J, DIAGNE M A, et al. Antimonide-based geiger-mode avalanche photodiodes at 2μm wavelength[J]. Applied Physics Letters, 2007, 91(23): 231115. doi: 10.1063/1.2822447 |
[32] |
DUERR E K, MANFRA M J, BAILEY R J, et al. Geiger-mode operation of antimonide-based avalanche photodiodes in the mid-wave infrared[C]// IEEE Lasers & Electro-optics Society: Leos Meeting. New York, USA: IEEE, 2008: 232-233. |
[33] |
DUERR E K, MANFRA M J, DIAGNE M A, et al. Antimonide-based Geiger-mode avalanche photodiodes for SWIR and MWIR photon counting[J]. Proceedings of the SPIE, 2010, 7681:76810Q. doi: 10.1117/12.851006 |
[34] |
MALLICK S, BANERJEE K, GHOSH S, et al. Midwavelength infrared avalanche photodiode using InAs/GaSb strain layer superla-ttice[J]. IEEE Photonics Technology Letters, 2007, 19(22):1843-1845. doi: 10.1109/LPT.2007.908726 |
[35] |
MALLICK S, BANERJEE K, GHOSH S, et al. Ultralow noise midwave infrared InAs-GaSb strain layer superlattice avalanche photo-diode[J]. Applied Physics Letters, 2007, 91(24):241111. |
[36] |
BANERJEE K, GHOSH S, MALLICK S, et al. Midwave infrared InAs/GaSb strained layer superlattice hole avalanche photodiode[J]. Applied Physics Letters, 2009, 94(20):201107. doi: 10.1063/1.3139012 |
[37] |
DANIEL S G O, JO S N. InAlAs avalanche photodiode with type-Ⅱ superlattice absorber for detection beyond 2μm[J]. IEEE Transactions on Electron Devices, 2011, 58(2):486-489. doi: 10.1109/TED.2010.2090352 |
[38] |
HUANG J, BANERJEE K, GHOSH S, et al. Dual-carrier high-gain low-noise superlattice avalanche photodiodes[J]. IEEE Transactions on Electron Devices, 2013, 60(7):2296-2301. doi: 10.1109/TED.2013.2264315 |