[1] 季国顺, 张永康. 激光抛光化学气相沉积金刚石膜[J]. 激光技术, 2003, 27(2): 106-109.JI G Sh, ZHANG Y K. Laser polished CVD diamond films[J]. Laser Technology, 2003, 27(2): 106-109(in Chinese).
[2] WILLIAMS O A, NESLADEK M, DAENEN M, et al. Growth, electronic properties and applications of nanodiamond[J]. Diamond and Related Materials, 2008, 17(7/10): 1080-1088.
[3] ABBASCHIAN R, ZHU H, CLARKE C. High pressure-high temperature growth of diamond crystals using split sphere apparatus[J]. Diamond and Related Materials, 2005, 14(11/12): 1916-1919.
[4] 郑腊梅, 吕豫文, 唐少雄, 等. 激光法制备超细纳米金刚石的相变机理[J]. 激光技术, 2016, 40(1): 25-28.ZHENG L M, LÜ Y W, TANG Sh X, et al. Phase growth mechanism of ultra-fine nano-diamond prepared by renosecond laser[J]. Laser Technology, 2016, 40(1): 25-28(in Chinese).
[5] HEMAWAN K W, GOU H Y, HEMLEY R J. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition[J]. Applied Physics Letters, 2015, 107(18): 181901. doi: 10.1063/1.4934751
[6] PEARCE S R J, HENLEY S J, CLAEYSSENS F, et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface[J]. Diamond and Related Materials, 2004, 13(4/8): 661-665.
[7] AMANS D, CHENUS A C, LEDOUX G, et al. Nanodiamond synthesis by pulsed laser ablation in liquids[J]. Diamond & Related Materials, 2009, 18(2/3): 177-180.
[8] McKINDRA T, O'KEEFE M J, XIE Zh Q, et al. Characterization of diamond thin films deposited by a CO2 laser-assisted combustion-flame method[J]. Materials Characterization, 2010, 61(6): 661-667. doi: 10.1016/j.matchar.2010.03.011
[9] REN X D, YANG H M, ZHENG L M, et al. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure[J]. Applied Physics Letters, 2014, 105(2): 021908. doi: 10.1063/1.4890527
[10] ZIPOLI F, BERNASCONI M, MARTOŇÁK R. Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited[J]. European Physical Journal, 2004, B39(1): 41-47.
[11] 王金斌, 杨国伟. 脉冲激光诱导液-固界面反应合成金刚石纳米晶中的结构相变模型[J]. 高压物理学报, 1999, 13(2): 147-151.WANG J B, YANG G W. Model of stracture transformation in synthesizing nano-crystalline diamond with pulsed-laser induced liquid-solid interface reaction[J]. Chinese Journal of High Pressure Physics, 1999, 13(3): 147-151(in Chinese).
[12] THORSLUND T, KAHLEN F J, KAR A. Temperatures, pressures and stresses during laser shock processing[J]. Optics and Lasers in Engineering, 2003, 39(1): 51-71. doi: 10.1016/S0143-8166(02)00040-4
[13] 周素素, 王新兵, 尹培琪, 等. 脉冲激光诱导石墨等离子体羽辉特性研究[J]. 激光技术, 2018, 42(6): 796-800(in Chinese).ZHOU S S, WANG X B, YIN P Q, et al. Study on characteristics of graphite plume induced by pulsed laser[J]. Laser Technology, 2018, 42(6): 796-800.
[14] CATTANEO C. A form of heat-conduction equations which eliminates the paradox of instantaneous propagation[J]. Comptes Rendus, 1958, 247(4): 431-433.
[15] VERNOTTE P. Some possible complications in the phenomena of thermal conduction[J]. Compte Rendus, 1961, 252(1): 2190-2191.
[16] JOSEPH D D, PREZIOSI L. Addendum to the paper "Heat waves"[J]. Review of Modern Physics, 1990, 62(2): 375-394.
[17] DENG D, MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37(3): 269-277.
[18] 唐彦琴, 顾国华, 钱惟贤, 等. 四象限探测器基于高斯分布的激光光斑中心定位算法[J]. 红外与激光工程, 2017, 46(2): 0206003.TANG Y Q, GU G H, QIAN W X, et al. Laser spot center location algorithm of four-quadrant detector based on Gaussian distribution[J]. Infrared and Laser Engineering, 2017, 46(2): 0206003(in Chinese).
[19] ALLOUIS C, ROSANO F, BERETTA F, et al. A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence[J]. Measurement Science and Technology, 2002, 13(3): 401-410.
[20] TOMLINSON E L, HOWELL D, JONES A P, et al. Characteristics of HPHT diamond grown at sub-lithosphere conditions (10-20 GPa)[J]. Diamond and Related Materials, 2011, 20(1): 11-17.
[21] LI X W, KE P, LEE K R, et al. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films[J]. Thin Solid Films, 2014, 552: 136-140.
[22] LI X W, KE P, ZHENG H, et al. Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study[J]. Applied Surface Science, 2013, 273: 670-675.
[23] REN X D, MA F H, WANG R H, et al. Morphology-selective preparation and formation mechanism of few-layer graphene on Cu substrate by liquid-phase pulsed laser ablation[J]. AIP Advances, 2019, 9(12): 125004.
[24] NYABADZA A, VAZQUEZ M, FITZPATRICK B, et al. Effect of liquid medium and laser processing parameters on the fabrication of carbon nanoparticles via pulsed laser ablation in liquid towards paper electronics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128151.
[25] MARKS N A, McKENZIE D R, PAILTHORPE B A, et al. Microscopic structure of tetrahedral amorphous carbon[J]. Physical Review Letters, 1996, 76(5): 768.
[26] SUN J G, WU S J, YANG S Z, et al. Enhanced photocatalytic activity induced by sp3 to sp2 transition of carbon dopants in BiOCl crystals[J]. Applied Catalysis B: Environmental, 2018, 221: 467-472.