[1] 范晋祥. 美国弹道导弹防御系统的红外系统与技术的发展[J]. 红外与激光程, 2006, 35(5): 536-540.FAN J X. Status quo and trend of infrared system and technologies for America's ballistic missile defense system[J]. Infrared and Laser Engineering, 2006, 35(5): 536-540(in Chinese).
[2] MOULTON P, DERGACHEV A, ISYANOVA Y, et al. Recent advances in solid state lasers and nonlinear optics for remote sensing[C]// Conference on Lidar Remote Sensing for Industry and Environment Monitoring Ⅲ. Bellingham, USA: International Society for Optical Engineering, 2003: 193-202.
[3] GUO B J, WANG Y, PENG C, et al. Laser-based mid-infrared reflectance imaging of biological tissues[J]. Optics Express, 2004, 12(1): 208-219. doi: 10.1364/OPEX.12.000208
[4] VAN HERPEN M, TE LINTEL HEKKERT S, BISSON S E, et al. Development of a powerful continuously tunable mid-infrared CW PPLN OPO for trace gas detection[C]// ALT'01 International Conference on Advanced Laser Technologies. Bellingham, USA: International Society for Optical Engineering, 2002: 16-21.
[5] VAINIO M, SILTANEN M, PELTOLA J, et al. Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy[J]. Applied Optics, 2011, 50(4): A1-A10. doi: 10.1364/AO.50.0000A1
[6] RICHTER D, FRIED A, WERT B P, et al. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Applied Physics, 2002, B75(2/3): 281-288.
[7] KRZEMPEK K, JAHJAH M, LEWICKI R, et al. CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell[J]. Applied Physics, 2013, B112(4): 461-465.
[8] ELVIN R, HOTH G W, WRIGHT M, et al. Cold-atom clock based on a diffractive optic[J]. Optics Express, 2019, 27(26): 38359-38366. doi: 10.1364/OE.378632
[9] REN T, WU C, YU Y, et al. Development progress of 3-5 μm mid-infrared lasers: OPO, solid-state and fiber laser[J]. Applied Sciences, 2021, 11(23): 11451. doi: 10.3390/app112311451
[10] TURNER E J, McDANIEL S A, TABIRYAN N, et al. Rapidly tunable HIP treated Cr ∶ZnSe narrow-linewidth laser[J]. Optics Express, 2019, 27(9): 12282-12288. doi: 10.1364/OE.27.012282
[11] LI Y Y, JU Y L, DAI T Y, et al. A gain-switched Fe ∶ZnSe laser pumped by a pulsed Ho, Pr: LLF laser[J]. Chinese Physics Letters, 2019, 36(4): 24-26.
[12] WANG Q, LIU C, QI L, et al. Wavelength tunable single-frequency Cr ∶ZnSe laser[C]// 2019 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications. Bellingham, USA: International Society for Optical Engineering, 2019: 114370H.
[13] DAI S, FENG G, HONG Z, et al. 4.24 μm mid-infrared laser based on a single Fe2+-doped ZnSe microcrystal[J]. Optics Letters, 2018, 43(3): 411-414. doi: 10.1364/OL.43.000411
[14] EVANS J W, STITES R W, HARRIS T R. Increasing the performance of an Fe ∶ZnSe laser using a hot isostatic press[J]. Optical Materials Express, 2017, 7(12): 4296-4303. doi: 10.1364/OME.7.004296
[15] EVANS J W, DOLASINSKO B D, HARRIS T R, et al. Demonstration and power scaling of an Fe ∶CdMnTe laser at 5.2 microns[J]. Optical Materials Express, 2017, 7(3): 860-867. doi: 10.1364/OME.7.000860
[16] STITES R W, McDANIEL S A, BARNES J O, et al. Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals[J]. Optical Materials Express, 2016, 6(10): 3339-3353. doi: 10.1364/OME.6.003339
[17] YUAN J H, CHEN Y, YANG H Y, et al. Investigation of a gain-switched Cr2+ ∶ZnSe laser pumped by an acousto-optic Q-switched Ho ∶YAG laser[J]. Quantum Electronics, 2016, 46(9): 772-776. doi: 10.1070/QEL16157
[18] LANCASTER A, COOK G, McDANIEL S A, et al. Mid-infrared laser emission from Fe ∶ZnSe cladding waveguides[J]. Applied Physics Letters, 2015, 107(3): 885-895.
[19] MAcDONALD J R, BEECHER S J, LANCASTER A, et al. Ultrabroad mid-infrared tunable Cr ∶ZnSe channel waveguide laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(1): 375-379.
[20] CHEN M, CUI H, LI W, et al. Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe[J]. Journal of Alloys and Compounds, 2014, 597(17): 124-128.
[21] McDANIEL S A, BERRY P A, SCHEPLER K L, et al. Gain-switched operation of ultrafast laser inscribed waveguides in Cr ∶ZnSe[C]// Solid State Lasers Ⅹ Ⅹ Ⅳ: Technology and Devices. Bellingham, USA: International Society for Optical Engineering, 2015: 93420E.
[22] SHEN Y, WANG Y, ZHU F, et al. 200 μJ, 13 ns Er ∶ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator[J]. Optics Letters, 2021, 46(5): 1141-1144. doi: 10.1364/OL.418950
[23] SHEN Y, WANG Y, LUAN K, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics, 2017, B123(4): 105-111.
[24] CRAWFORD S, HUDSON D D, JACKSON S D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 2015, 7(3): 1502309.
[25] BERNIER M, MICHAUD-BELLEAU V, LEVASSEUR S, et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 2015, 40(1): 81-84. doi: 10.1364/OL.40.000081
[26] 沈炎龙, 黄珂, 朱峰, 等. LD泵浦瓦级单模高掺铒中红外光纤激光器[J]. 光子学报, 2014, 43(3): 0314002.SHEN Y L, HUANG K, ZHU F, et al. Laser diode-pumped watt-level single mode heavily erbium-doped mid-infrared fiber laser[J]. Acta Photonica Sinica, 2014, 43(3): 0314002(in Chinese).
[27] HUDSON D D, WILLIAMS R J, WITHFORD M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 2013, 38(14): 2388-2390. doi: 10.1364/OL.38.002388
[28] ZHU X Sh, JAIN R. Compact 2 W wavelength-tunable Er ∶ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383. doi: 10.1364/OL.32.002381
[29] BAYRAKLI I. Frequency-stabilized narrow-linewidth double-mode quantum cascade laser[J]. Optical and Quantum Electronics, 2022, 54(1): 22 (2022).
[30] CAPPELLI F, GALLI I, BORRI S, et al. Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-doppler reference[J]. Optics Letters, 2012, 37(23): 4811-4813. doi: 10.1364/OL.37.004811
[31] SHEHZAD A, BROCHARD P, MATTHEY R, et al. 10 kHz linewidth mid-infrared quantum cascade laser by stabilization to an optical delay line[J]. Optics Letters, 2019, 44(14): 3470-3473. doi: 10.1364/OL.44.003470
[32] BORRI S, GALLI I, CAPPELLI F, et al. Direct link of a mid-infrared QCL to a frequency comb by optical injection[J]. Optics Letters, 2012, 37(6): 1011-1013. doi: 10.1364/OL.37.001011
[33] ZHAO B, WANG X, WANG C. Strong optical feedback stabilized quantum cascade laser[J]. ACS Photonics, 2020, 7(5): 1255-1261. doi: 10.1021/acsphotonics.0c00189
[34] 聂鸿坤, 宁建, 张百涛, 等. 光学超晶格中红外光参量振荡器研究进展[J]. 中国激光, 2021, 48(5): 0501008.NIE H K, NING J, ZHANG B T, et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 2021, 48(5): 0501008 (in Chinese).
[35] WANG X C, WANG Y H, ZHENG H, et al. Wide-tunable mid infrared intra-cavity optical parametric oscillator based on multi-period MgO ∶PPLN[J]. Current Optics and Photonics, 2021, 5(1): 59-65.
[36] RICCIARDI I, MOSCA S, PARISI M, et al. Sub-kHz-linewidth mid-infrared optical parametric oscillator[C]// Conference on Lasers and Electro-Optics. New York, USA: IEEE, 2014: STh1N. 3.
[37] FENG J, CHENG X, LI X, et al. Highly efficient mid-infrared generation from low-power single-frequency fiber laser using phase-matched intracavity difference frequency mixing[J]. Applied Sciences-Basel, 2020, 10(21): 7454-7461. doi: 10.3390/app10217454
[38] ZHAO J, CHENG P, XU F, et al. Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on MgO ∶PPLN at 3.68 μm[J]. Applied Sciences-Basel, 2018, 8(8): 1345-1352. doi: 10.3390/app8081345
[39] 邢廷伦, 王礼, 胡舒武, 等. 3μm低阈值MgO ∶PPLN-OPO布拉格体光栅腔谱宽压窄研究[J]. 中国激光, 2017, 44(1): 10101006.XING Y L, WANG L, HU Sh W, et al. Cavity-linewidth narrowing of 3 μm low threshold MgO ∶PPLN-OPO by volume Bragg grating[J]. Chinese Journal of Lasers, 2017, 44(1): 0101006 (in Chinese).
[40] XING T, WANG L, HU S, et al. Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities[J]. Optics Express, 2017, 25(25): 31810-31815. doi: 10.1364/OE.25.031810
[41] JIAO Z, GUO J, HE G, et al. Narrowband intracavity MgO ∶PPLN optical parametric oscillator near degeneracy with a volume Bragg grating[J]. Optics and Laser Technology, 2014, 56: 230-233. doi: 10.1016/j.optlastec.2013.08.023
[42] ZEIL P, THILMANN N, PASISKEVICIUS V, et al. High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating[J]. Optics Express, 2014, 22(24): 29907-29913. doi: 10.1364/OE.22.029907
[43] DOLASINSKI B, POWERS P. Narrow bandwidth tunable optical parametric generator[C]// Nonlinear Frequency Generation and Conversion. Bellingham, USA: International Society for Optical Engineering, 2013: 8604H.
[44] RICCIARDI I, DE TOMMASI E, MADDALONI P, et al. A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy[J]. Molecular Physics, 2012, 110(17): 2103-2109. doi: 10.1080/00268976.2012.699640
[45] JACOBSSON B, CANALIAS C, PASISKEVICIUS V, et al. Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating[J]. Optics Letters, 2007, 32(22): 3278-3280. doi: 10.1364/OL.32.003278
[46] PENG Y, WEI X, NIE Z, et al. High-power, narrow-bandwidth mid-infrared PPMgLN optical parametric oscillator with a volume Bragg grating[J]. Optics Express, 2015, 23(24): 30827-30832. doi: 10.1364/OE.23.030827
[47] HE G, GUO J, JIAO Z, et al. High-efficiency near-degenerate PPMgLN optical parametric oscillator with a volume Bragg grating[J]. Optics Letters, 2012, 37(8): 1364-1366. doi: 10.1364/OL.37.001364
[48] LI K, YANG S, WANG X, et al. Frequency chirped intensity modulated mid-infrared light source based on optical parametric oscillation[J]. IEEE Photonics Journal, 2020, 12(1): 1500409.
[49] ERUSHIN E, NYUSHKOV B, IVANENKO A, et al. Tunable injection-seeded fan-out-PPLN optical parametric oscillator for high-sensitivity gas detection[J]. Laser Physics Letters, 2021, 18(11): 116201-116207. doi: 10.1088/1612-202X/ac2585
[50] 卞进田, 叶庆, 孙晓泉. ZnGeP2 OPO产生4.3μm波段窄线宽激光实验研究[J]. 国防科技大学学报, 2018, 40(4): 9-14.BIAN J T, YE Q, SUN X Q. ZnGeP2 optical parametric oscillator 4.3 μm laser with narrow line-width[J]. Journal of National University of Defense Technology, 2018, 40(4): 9-14(in Chinese).
[51] BIAN J T, KONG H, YE Q, et al. Narrow-linewidth BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 2022, 20(4): 041901.