[1] |
刘煊, 渠慎明. 低秩稀疏和改进SAM的高光谱图像误标签检测[J]. 激光技术, 2022, 46(6): 808-816. doi: 10.7510/jgjs.issn.1001-3806.2022.06.016LIU X, QU Sh M. False label detection in hyperspectral image based on low rank sparse and improved SAM[J]. Laser Technology, 2022, 46(6): 808-816(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.06.016 |
[2] |
臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.ZANG Ch K, SHEN F, YANG Zh D. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53(in Chinese). |
[3] |
刘翠连, 陶于祥, 罗小波, 等. 混合卷积神经网络的高光谱图像分类方法[J]. 激光技术, 2022, 46(3): 355-361. doi: 10.7510/jgjs.issn.1001-3806.2022.03.009LIU C L, TAO Y X, LUO X B, et al. Hyperspectral image classification based on hybrid convolutional neural network[J]. Laser Techno-logy, 2022, 46(3): 355-361(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.03.009 |
[4] |
YOKOYA N, YAIRI T, IWASAKI A. Coupled nonnegative matrix factorizationunmixing for hyperspectral and multispectral data fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 50(2): 528-537. |
[5] |
YANG F X, PING Z L, MA F, et al. Fusion of hyperspectral and multispectral images with sparse and proximal regularization[J]. IEEE Access, 2019, 7: 186352-186363. doi: 10.1109/ACCESS.2019.2961240 |
[6] |
AHMAD T, LYNGDOH R B, ANAND S S, et al. Robust coupled non-negative matrix factorization for hyperspectral and multispectral data fusion[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. New York, USA: IEEE Press, 2021: 2456-2459. |
[7] |
KANATSOULIS C I, FU X, SIDIROPOULOS N D, et al. Hyperspectral super-resolution: A coupled tensor factorization approach[J]. IEEE Transactions on Signal Processing, 2018, 66(24): 6503-6517. doi: 10.1109/TSP.2018.2876362 |
[8] |
MA F, HUO S, YANG F X. Graph-based logarithmic low-rank tensor decomposition for the fusion of remotely sensed images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11271-11286. doi: 10.1109/JSTARS.2021.3123466 |
[9] |
HU J F, HUANG T Zh, DENG L J, et al. Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(12): 7251-7265. |
[10] |
XIAO J J, LI J, YUAN Q Q, et al. Physics-based GAN with iterative refinement unit for hyperspectral and multispectral image fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6827-6841. doi: 10.1109/JSTARS.2021.3075727 |
[11] |
HU J F, HUANG T Zh, DENG L J, et al. Fusformer: A transformer-based fusion network for hyperspectral image super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. |
[12] |
WU H P, XIAO B, CODELLA N, et al. Cvt: Introducing convolutions to vision transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. New York, USA: IEEE Press, 2021: 22-31. |
[13] |
HE A, LI T, LI N, et al. CABNet: Category attention block for imbalanced diabetic retinopathy grading[J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 143-153. |
[14] |
LI Zh W, SUI H, LUO C, et al. Morphological convolution and attention calibration network for hyperspectral and LiDAR data classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 5728-5740. doi: 10.1109/JSTARS.2023.3284655 |
[15] |
PAN H D, GAO F, DONG J Y, et al. Multiscale adaptive fusion network for hyperspectral image denoising[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 3045-3059. doi: 10.1109/JSTARS.2023.3257051 |
[16] |
王龙光, 郭裕兰, 林再平, 等. 基于Transformer的高光谱图像超分辨率重建[J]. 中国科学: 信息科学, 2023, 53(3): 500-516.WANG L G, GUO Y L, LIN Z P, et al. Deep hyperspectral image super-resolution with transformers[J]. Scientia Sinica: Informationis, 2023, 53(3): 500-516(in Chinese). |
[17] |
SUI L Ch, LI L, LI J, et al. Fusion of hyperspectral and multispectral images based on a Bayesian nonparametric approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12: 1205-1218. doi: 10.1109/JSTARS.2019.2902847 |
[18] |
CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)-Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3): 1247-1250. doi: 10.5194/gmd-7-1247-2014 |
[19] |
JIANG J J, SUN H, LIU X M, et al. Learning spatial-spectral prior for super-resolution of hyperspectral imagery[J]. IEEE Transactions on Computational Imaging, 2020, 6: 1082-1096. doi: 10.1109/TCI.2020.2996075 |
[20] |
LI Q, YUAN Y, JIA X P, et al. Dual-stage approach toward hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 2022, 31: 7252-7263. |
[21] |
WANG Zh, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
[22] |
YASUMA F, MITSUNAGA T, ISO D, et al. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2241-2253. |
[23] |
CHAKRABARTI A, ZICKLER T. Statistics of real-world hyperspectral images[C]//CVPR 2011. New York, USA: IEEE Press, 2011: 193-200. |
[24] |
WEI Q, BIOUCAS-DIAS J, DOBIGEON N, et al. Hyperspectral and multispectral image fusion based on a sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3658-3668. |
[25] |
LI Sh T, DIAN R W, FANG L Y, et al. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization[J]. IEEE Transactions on Image Processing, 2018, 27(8): 4118-4130. |
[26] |
DIAN R W, FANG L Y, LI Sh T. Hyperspectral image super-resolution via non-local sparse tensor factorization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE Press, 2017: 5344-5353. |