[1] 安胜彪, 娄慧儒, 陈书旺, 等. 基于深度学习的旋转目标检测方法研究进展[J]. 电子测量技术, 2021, 44(21): 168-178.AN Sh B, LOU H R, CHEN Sh W, et al. Research progress of rotating target detection methods based on deep learning[J]. Electronic Measurement Technology, 2021, 44(21): 168-178(in Chinese).
[2] 李宇豪, 吕晓琪, 谷宇, 等. 基于改进S3FD网络的人脸检测算法[J]. 激光技术, 2021, 45(6): 722-728.LI Y H, LV X Q, GU Y, et al. Face detection algorithm based on improved S3FD network[J]. Laser Technology, 2021, 45(6): 722-728(in Chinese).
[3] 常颖, 常大俊. 改进型卷积神经网络焊点缺陷识别算法研究[J]. 激光技术, 2020, 44(6): 779-783.CHANG Y, CHANG D J. Research on solder joint defect recognition algorithm based on improved convolutional neural network[J]. Laser Technology, 2020, 44(6): 779-783(in Chinese).
[4] 王坚, 张义兵, 陈双, 等. 基于机器视觉的瞄准镜缺陷检测系统设计[J]. 制造业自动化, 2022, 44(2): 36-41.WANG J, ZHANG Y B, CHEN Sh, et al. Design of the inspection system for the defects of the sight based on machine vision[J]. Manufacturing Automation, 2022, 44(2): 36-41(in Chinese).
[5] 赵文清, 孔子旭, 周震东, 等. 增强小目标特征的航空遥感目标检测[J]. 中国图象图形学报, 2021, 26(3): 644-653.ZHAO W Q, KONG Z X, ZHOU Zh D, et al. Target detection algorithm of aerial remote sensing based on feature enhancement technology[J]. Journal of Image and Graphics, 2021, 26(3): 644-653(in Chinese).
[6] 李宇环, 王洁, 鲁力, 等. 用于遥感图像的轻量化实时目标检测模型[J]. 激光与光电子学进展, 2021, 58(16): 1615007.LI Y H, WANG J, LU L, et al. Lightweight real-time target detection model for remote sensing images[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1615007(in Chinese).
[7] 胡锦林, 齐永锋, 王佳颖. 基于时空图卷积网络的学生在线课堂行为识别[J]. 光电子·激光, 2022, 33(2): 149-156.HU J L, QI Y F, WANG J Y. Recognition of students'online classroom action based on spatiotemporal graph convolutional network[J]. Journal of Optoelectronics·Laser, 2022, 33(2): 149-156(in Chin-ese).
[8] 杨斌, 云霄, 董锴文, 等. 基于机器视觉的石化场景人员危险行为识别[J]. 激光与光电子学进展, 2021, 58(22): 2215001.YANG B, YUN X, DONG K W, et al. Human's dangerous action recognition in petrochemical scene using machine vision[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2215001(in Chinese).
[9] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[10] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 3(1): 2672-2680.
[11] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2016: 770-778.
[12] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[M]. Berlin, Germany: Springer International Publishing, 2016: 694-711.
[13] NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2017: 257-265.
[14] RAMAKRISHNAN S, PACHORI S, GANGOPADHYAY A, et al. Deep generative filter for motion deblurring[C]//Proceedings of the IEEE International Conference on Computer Vision. New York, USA: IEEE, 2017: 2993-3000.
[15] KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeBlur GAN: Blind motion deblurring using conditional adversarial networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2018: 8183-8192.
[16] OUYANG Y. Total variation constraint GAN for dynamic scene deblurring[J]. Image and Vision Computing, 2019, 88: 113-119.
[17] NIMISHA T M, SINGH A K, RAJAGOPALAN A N. Blur-invariant deep learning for blind-deblurring[C]//Proceedings of the IEEE International Conference on Computer Vision. New York, USA: IEEE, 2017: 4762-4770.
[18] TAO X, GAO H, WANG Y, et al. Scale-recurrent network for deep image deblurring[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2018: 8174-8182.
[19] KUPYN O, MARTYNIUK T, WU J, et al. DeBlur GAN-V2: Deblurring (orders-of-magnitude) faster and better[C]//IEEE/CVF International Conference on Computer Vision (ICCV). New York, USA: IEEE, 2019: 8877-8886.
[20] YONG Z, SHAO Y M, XI Z, et al. EDGAN: Motion deblurring algorithm based on enhanced generative adversarial networks[J]. The Journal of Supercomputing, 2020, 76(11): 1-16.
[21] 郭佑东, 凌福日, 姚建铨. 基于梯度变换的太赫兹图像超分辨率重建[J]. 激光技术, 2020, 44(3): 271-277.GUO Y D, LING F R, YAO J Q. Super-resolution reconstruction for terahertz images based on gradient transform[J]. Laser Technology, 2020, 44(3): 271-277(in Chinese).
[22] QI Q, GUO J, JIN W. Attention network for non-uniform deblurring[J]. IEEE Access, 2020, 8: 100044-100057.
[23] LI X L, LI G, DU Zh L. High fidelity single image blind deblur via GAN[J]. Wireless Networks, 2021, 2: 1-10.
[24] HUANG G, LIU Z, LAURENS V, et al. Densely connected convolutional networks[C] //IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2017: 2261-2269.
[25] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2017: 105-114.