[1] NIE Zh Q, LIN H, LIU X F, et al. Three-dimensional super-resolution longitudinal magnetization spot arrays[J]. Light: Science & A-pplications, 2017, 6(8): e17032.
[2] NIE Zh Q, SHI G, ZHANG X R, et al. Generation of super-resolution longitudinally polarized beam with ultra-long depth of focus using radially polarized hollow Gaussian beam[J]. Optics Communications, 2014, 331(22): 87-93.
[3] ZHAO Y C, NIE Zh Q, ZHAI A P, et al. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films[J]. Optoelectronics Letters, 2018, 14(1): 21-24. doi: 10.1007/s11801-018-7163-5
[4] WANG H F, SHI L P, LUKYANCHUK B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505. doi: 10.1038/nphoton.2008.127
[5] SHI C K, NIE Zh Q, TIAN Y T, et al. Super-resolution longitudinally polarized light needle achieved by tightly focusing radially polarized beams[J]. Optoelectronics Letters, 2018, 14(1): 1-5. doi: 10.1007/s11801-018-7162-6
[6] WANG H Ch, HU A J, CHEN P F. Generation of Laguerre-Gaussian beam based on spatial light modulator[J]. Laser Technology, 2017, 41(3): 447-450 (in Chinese).
[7] ZHANG Y J, GAO Sh H, S Y, et al. Preparation and characteristics of large aperture liquid crystal q-wave-plates[J]. Laser Technology, 2019, 43(4): 6-11(in Chinese).
[8] NIE Zh Q, LI Z G, SHI G, et al. Generation of a sub-wavelength focal spot with a long transversally polarized optical needle using a double-ring-shaped azimuthally polarized beam[J]. Optics and Lasers in Engineering, 2014, 59(12): 93-97.
[9] GUAN J, LIN J, CHEN C, et al. Transversely polarized sub-diffraction optical needle with ultra-long depth of focus[J]. Optics Communications, 2017, 404(9): 118-123.
[10] LI G, LU F, ZHU B, et al. Effect of wavefront aberrations on focusing characteristics of ultrashort femtosecond laser pulses[J]. Laser Technology, 2020, 44(1): 14-19 (in Chinese).
[11] ZHAO J H, WANG Q, ZHU M B, et al. Compact focusing properties of radial vector beam with vortex phase encoding[J]. Laser Technology, 2017, 41(2): 187-190 (in Chinese).
[12] LIU S, WANG M R, LI P, et al. Abrupt polarization transition of vector autofocusing Airy beams[J]. Optics Letters, 2013, 38(14): 2416-2418. doi: 10.1364/OL.38.002416
[13] ZHU W G, SHE W L. Tightly focusing vector circular Airy beam through a hard aperture[J]. Optics Communications, 2015, 334(28): 303-307.
[14] WANG F, ZHAO C B L, DONG Y, et al. Generation and tight-focusing properties of cylindrical vector circular Airy beams[J]. A-pplied Physics, 2014, B117(3): 905-913. doi: 10.1007/s00340-014-5908-9
[15] JIN L, ZHANG X Q. Characteristics of Airy beam propagating in circular periodic media[J]. Laser Technology, 2019, 43(3): 432-436 (in Chinese).
[16] LI Y, MO W Ch, YANG Zh G. Generation of terahertz vortex beams base on metasurface antenna arrays[J]. Laser Technology, 2017, 41(5): 644-648 (in Chinese).
[17] ZHAN Q W. Properties of circularly polarized vortex beams[J]. Optics Letters, 2006, 31(7): 867-869. doi: 10.1364/OL.31.000867
[18] ZHANG Y Zh, WANG J M, LU Y G, et al. Application of the manipulated vectorial laser filed in surface treatment[J]. Laser Technology, 2020, 44(1): 32-36 (in Chinese).
[19] GUAN J, LIN J, MA Y, et al. A subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light[J]. Science Letters, 2017, 7(1): 1-8.
[20] MAN Z S, MIN C J, DU L P, et al. Sub-wavelength sized transversely polarized optical needle with exceptionally suppressed side-lobes[J]. Optics Express, 2016, 24(2): 874-882. doi: 10.1364/OE.24.000874
[21] ZENG L W, CAI Y J, TAN C S, et al. Optimization of Stokes optical polarization measurement system[J]. Laser Technology, 2017, 41(1): 74-78(in Chinese).