[1] MAINE P, STRICKLAND D, BADO P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 398-403. doi: 10.1109/3.137
[2] PERRY M D, MOUROU G. Terawatt to petawatt sub-picosecond lasers[J]. Science, 1994, 264(5161): 917-924. doi: 10.1126/science.264.5161.917
[3] EIDAM T, HANDF S, SEISE E, et al. Femtosecond fiber CPA system emitting 830W average output power[J]. Optics Letters, 2010, 35(2): 94-96. doi: 10.1364/OL.35.000094
[4] MOUROU G A, BARRY C P J, PERRY M D. Ultrahigh-intensity lasers: Physics of the extreme on a tabletop[J]. Physics Today, 1998, 51(1): 22-28. doi: 10.1063/1.882131
[5] CORKUM P B, KRAUSZ F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387. doi: 10.1038/nphys620
[6] KRAUSZ F, IVANOV M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234. doi: 10.1103/RevModPhys.81.163
[7] POGORELSKY I V, BEN-ZVI I, HIROSE T, et al. Demonstration of 8×1018 photons/second peaked at 1.8Å in a relativistic Thomson scattering experiment[J]. Physical Review Accelerators & Beams, 2000, 3(9): 090702.
[8] SAKAI I, AOKI T, DOBASHI K, et al. Production of high brightness γ rays through backscattering of laser photons on high-energy electrons[J]. Physical Review Accelerators & Beams, 2003, 6(9): 091001.
[9] YAN W Ch, FRUHLING C, GOLOVIN G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. doi: 10.1038/nphoton.2017.100
[10] KHRENNIKOV K, WENZ J, BUCK A, et al. Tunable all-optical quasimonochromatic thomson X-ray source in the nonlinear regime[J]. Physical Review Letters, 2015, 114(19): 195003. doi: 10.1103/PhysRevLett.114.195003
[11] ZHUANG J W, YAN Y L, ZHOU X. Quasi-monochromatic spectral emission characteristics from electron collision with tightly focused laser pulses[J]. Laser Physics, 2021, 31(3): 035401. doi: 10.1088/1555-6611/abe23b
[12] MIKHAILOVA Y M, PLATONENKO V T, RYKOVANOV S G. Generation of an attosecond X-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse[J]. Journal of Experimental & Theoretical Physics Letters, 2005, 81(11): 571-574.
[13] PHUOC K T, CORDE S, THAURY C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6: 308-311. doi: 10.1038/nphoton.2012.82
[14] THOMLINSON W. Medical applications of synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section, 1992, A319(1-3): 295-304.
[15] LEE K, CHUNG S Y, PARK S H, et al. Effects of high-order fields of a tightly focused laser pulse on relativistic nonlinear Thomson scattered radiation by a relativistic electron[J]. Europhysics Letters, 2010, 89(6): 613-630.
[16] CHI Z, DU Y, HUANG W, et al. Linearly polarized X-ray fluorescence computed tomography based on a Thomson scattering light source: A Monte Carlo study[J]. Journal of Synchrotron Radiation, 2020, 27(3): 737-745. doi: 10.1107/S1600577520003574
[17] BALTUSKA A, UDEM T, UIBERACKER M, et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 2003, 421(6923): 611-615. doi: 10.1038/nature01414
[18] LEE K, CHA Y H, SHIN M S, et al. Relativistic nonlinear Thomson scattering as attosecond X-ray source[J]. Physical Review, 2003, E67(2): 26502-26502.
[19] ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors affecting the single electron nonlinear Thomson scattering[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese). doi: 10.7498/aps.54.1018
[20] LI K, LI L X, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J]. Optik, 2019, 183: 813-817. doi: 10.1016/j.ijleo.2019.02.154
[21] WANG Y Q, WANG C L, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2021, 18(1): 015303. doi: 10.1088/1612-202X/abd170
[22] HE F, YU W, LU P X, et al. Ponderomotive acceleration of electrons by a tightly focused intense laser beam. Physical Review, 2003, E68(4): 046407.