[1] MARTYNIUK P, ROGALSKI A. Van der Waals two-color infrared detection[J]. Light: Science & Applications, 2022, 11(1): 27.
[2] WANG K, WANG H, CHEN C, et al. High-performance ultraviolet photodetector based on single-crystal integrated self-Supporting 4H-SiC nanohole arrays[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23457-23469.
[3] FENG S, LIU Z, FENG L, et al. High-performance self-powered ultraviolet photodetector based on Ga2O3/GaN heterostructure for optical imaging[J]. Journal of Alloys and Compounds, 2023, 945: 169274. doi: 10.1016/j.jallcom.2023.169274
[4] HUANG S, WU Q, JIA Z, et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 2020, 8(7): 1901808. doi: 10.1002/adom.201901808
[5] WANG L, ZHANG Y, WANG B, et al. High-performance infrared Ge-based plasmonic photodetector enhanced by dual absorption mechanism[J]. APL Photonics, 2020, 5(9): 096104. doi: 10.1063/5.0021187
[6] LIU H, WANG J, GUO D, et al. Design and fabrication of high performance InGaAs near infrared photodetector[J]. Nanomaterials, 2023, 13(21): 2895. doi: 10.3390/nano13212895
[7] YIN X, ZHANG C, GUO Y, et al. PbS QD-based photodetectors: Future-oriented near-infrared detection technology[J]. Journal of Materials Chemistry, 2021, C9(2): 417-438.
[8] GAWRON W, DAMI CKI A, KO NIEWSKI A, et al. Multiple long wavelength infrared MOCVD grown HgCdTe photodetectors for high temperature conditions[J]. IEEE Sensors Journal, 2021, 21(4): 4509-4516. doi: 10.1109/JSEN.2020.3035246
[9] 孙童, 关晓宁, 张凡, 等. 基于k·p方法的二类超晶格红外探测器仿真进展[J]. 激光技术, 2023, 47(4): 439-453. doi: 10.7510/jgjs.issn.1001-3806.2023.04.001SUN T, GUAN X N, ZHANG F, et al. Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method[J]. Laser Technology, 2023, 47(4): 439-453 (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2023.04.001
[10] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
[11] SUSARLA S, KUTANA A, HACHTEL J A, et al. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap[J]. Advanced Materials, 2017, 29(35): 1702457. doi: 10.1002/adma.201702457
[12] WANG J, MA F, LIANG W, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures[J]. Materials Today Physics, 2017, 2: 6-34. doi: 10.1016/j.mtphys.2017.07.001
[13] LI L, YU Y, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35
[14] WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the Synthesis of 2D MXenes[J]. Advanced Materials, 2021, 33(39): 2103148. doi: 10.1002/adma.202103148
[15] FENG W, WU J B, LI X, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response[J]. Journal of Materials Chemistry, 2015, C3(27): 7022-7028.
[16] ZHENG Z Q, YAO J D, YANG G W. Growth of centimeter-scale high-quality In2Se3 films for transparent, flexible and high performance photodetectors[J]. Journal of Materials Chemistry, 2016, C4(34): 8094-8103.
[17] CHEN X, LU X, DENG B, et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nature Communications, 2017, 8(1): 1672.
[18] 程碑彤, 代千, 谢修敏, 等. 单光子探测器的研究进展[J]. 激光技术, 2022, 46(5): 601-609. doi: 10.7510/jgjs.issn.1001-3806.2022.05.004CHEN B T, DAI Q, XIE X M, et al. Research progress of single-photon detectors[J]. Laser Technology, 2022, 46(5): 601-609 (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2022.05.004
[19] SHIN G H, PARK C, LEE K J, et al. Ultrasensitive phototransistor based on WSe2-MoS2 van der Waals heterojunction[J]. Nano Letters, 2020, 20(8): 5741-5748.
[20] LONG M, LIU E, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259.
[21] JIN H J, PARK C, LEE K J, et al. Ultrasensitive WSe2/α-In2Se3 NIR photodetector based on ferroelectric gating effect[J]. Advanced Materials Technologies, 2021, 6(11): 2100494.
[22] YAN W, SHRESHA V R, JEANGROS Q, et al. Spectrally selective mid-wave infrared detection using Fabry-Pérot cavity enhanced black phosphorus 2D photodiodes[J]. ACS Nano, 2020, 14(10): 13645-13651.
[23] MAO J, YU Y, WANG L, et al. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode[J]. Advanced Science, 2016, 3(11): 1600018.
[24] WANG B, WANG L, ZHANG Y, et al. Mixed-dimensional MoS2/Ge heterostructure junction field-effect transistors for logic operation and photodetection[J]. Advanced Functional Materials, 2022, 32(10): 2110181.
[25] SHU K, GAO W, WAN F, et al. High-performance broadband photodetectors based on N-MoS2/P-Ge0.9Sn0.1 heterojunctions[J]. ACS Applied Electronic Materials, 2021, 3(7): 3218-3225.
[26] JAIN S K, LOW M X, TAYLOR P D, et al. 2D/3D hybrid of MoS2/GaN for a high-performance broadband photodetector[J]. ACS Applied Electronic Materials, 2021, 3(5): 2407-2414.
[27] JIA C, HUANG X, WU D, et al. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-Ⅱ Zener heterojunction[J]. Nanoscale, 2020, 12(7): 4435-4444.
[28] FANG C, WANG H, SHEN Z, et al. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8419-8427.
[29] KROEMER H. Heterostructure bipolar transistors and integrated circuits[J]. Proceedings of the IEEE, 1982, 70(1): 13-25.
[30] MAO Y, XU P, WU Q, et al. Self-powered high-detectivity lateral MoS2 Schottky photodetectors for near-infrared operation[J]. Advanced Electronic Materials, 2021, 7(3): 2001138.
[31] KROEMER H. Theory of a wide-gap emitter for transistors[J]. Proceedings of the IRE, 1957, 45(11): 1535-1537.
[32] YAO J, YANG G. 2D material broadband photodetectors[J]. Nanoscale, 2020, 12(2): 454-476.
[33] ANG K W, YU M B, LO G Q, et al. Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime[J]. IEEE Electron Device Letters, 2008, 29(10): 1124-1127.
[34] SORIANELLO V, de ANGELIS G, de IACOVO A, et al. High responsivity SiGe heterojunction phototransistor on silicon photonics platform[J]. Optics Express, 2015, 23(22): 28163-28169.
[35] FROUNCHI M, TZINTZAROV G N, ILDEFONSO A, et al. High responsivity Ge phototransistor in commercial CMOS Si-photonics platform for monolithic optoelectronic receivers[J]. IEEE Electron Device Letters, 2021, 42(2): 196-199.
[36] LI H, CAI X, WANG J, et al. Ultrahigh sensitive phototransistor based on MoSe2/Ge mixed-dimensional heterojunction for visible to short-wave infrared broadband photodetection[J]. IEEE Transactions on Electron Devices, 2023, 70(12): 6446-6451.
[37] DUAN X, WANG C, PAN A, et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges[J]. Chemical Society Reviews, 2015, 44(24): 8859-8876.
[38] WU Z, WANG C, HUANG W, et al. Ohmic contact formation of sputtered TaN on n-type Ge with lower specific contact resistivity[J]. ECS Journal of Solid State Science and Technology, 2012, 1(1): 30-33.
[39] LIN G, LIANG D, YU C, et al. Broadband 400-2400 nm Ge heterostructure nanowire photodetector fabricated by three-dimensional Ge condensation technique[J]. Optics Express, 2019, 27(22): 32801-32809.
[40] HWANG A, PARK M, PARK Y, et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure[J]. Science Advances, 2021, 7(51): eabj2521.
[41] LEE C H, PARK Y, YOUN S, et al. Design of P-WSe2/N-Ge heterojunctions for high-speed broadband photodetectors[J]. Advanced Functional Materials, 2022, 32(4): 2107992.
[42] STANGE D, WIRTHS S, VON DEN DRIESCH N, et al. Optical transitions in direct-bandgap Ge1-xSnx alloys[J]. ACS Photonics, 2015, 2(11): 1539-1545.
[43] CHANG G E, BASU R, MUKHOPADHYAY B, et al. Design and modeling of GeSn-based heterojunction phototransistors for communication applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 425-433.
[44] WANG W, DONG Y, LEE S Y, et al. Floating-base germanium-tin heterojunction phototransistor for high-efficiency photodetection in short-wave infrared range[J]. Optics Express, 2017, 25(16): 18502-18507.
[45] HUNG WT, BARSHILIA D, BASU R, et al. Silicon-based high-responsivity GeSn short-wave infrared heterojunction phototransistors with a floating base[J]. Optics Letters, 2020, 45(5): 1088-1091.
[46] CAI X, LI S, QIAN J, et al. High-performance N-MoSe2/P-GeSn/N-Ge van der Waals heterojunction phototransistor for short-Wave infrared photodetection[J]. Advanced Optical Materials, 2023, 12(5): 2301724.
[47] LIN G, QIAN J, DING H, et al. Harvesting strong photoluminescence of physical vapor deposited GeSn with record high deposition temperature[J]. Journal of Physics, 2023, D56(35): 355104.
[48] LIN G, QIAN K, DING H, et al. Effective strain relaxation of GeSn single crystal with Sn content of 16.5% on Ge grown by high-temperature sputtering[J]. Applied Surface Science, 2023, 623: 157086.
[49] TRAN H, PHAM T, MARGETIS J, et al. Si-based GeSn photodetectors toward mid-infrared imaging applications[J]. ACS Photonics, 2019, 6(11): 2807-2815.
[50] YANG T, DING H, CAI X, et al. Low-cost self-powered shortwave infrared photodetectors with GeSn/Ge multiple quantum wells grown by magnetron sputtering[J]. IEEE Electron Device Letters, 2023, 45(2): 156-159.
[51] TRAN H, PHAM T, DU W, et al. High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging[J]. Journal of Applied Physics, 2018, 124(1): 013101.
[52] ZHU S, LO G Q, YU M B, et al. Silicide Schottky-barrier phototransistor integrated in silicon channel waveguide for in-line power monitoring[J]. IEEE Photonics Technology Letters, 2009, 21(3): 185-187.
[53] LI S, WU Q, DING H, et al. High gain, broadband P-WSe2/N-Ge van der Waals heterojunction phototransistor with a Schottky barrier collector[J]. Nano Research, 2023, 16(4): 5796-5802.
[54] LI S, CAI X, DING H, et al. Visible to short-wave infrared broadband P-WSe2/N-Ge heterojunction phototransistor with an annular shallow-trench Schottky barrier collector[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2024, 18(1): 2300276.
[55] CHEN W, LIANG R, ZHANG S, et al. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure[J]. Nano Research, 2020, 13(1): 127-132.
[56] DHYANI V, DAS M, UDDIN W, et al. Self-powered room temperature broadband infrared photodetector based on MoSe2/germanium heterojunction with 35 A/W responsivity at 1550 nm[J]. Applied Physics Letters, 2019, 114(12): 121101.