[1] SU R, DIEDERICHS C, WANG J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 2017, 17(6): 3982-3988. doi: 10.1021/acs.nanolett.7b01956
[2] RAM R J, PAU S, YAMAMOTO Y, et al. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers[J]. Physical Review, 1996, A53(6): 4250-4253.
[3] CIUTI C, BAUMBERG J J, TEJEDOR C, et al. Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities[J]. Physical Review, 2002, B66(8): 85304.
[4] MALPUECH G, DI CARLO A, KAVOKIN A, et al. Room-temperature polariton lasers based on GaN microcavities[J]. Applied Physics Letters, 2002, 81(3): 412-414. doi: 10.1063/1.1494126
[5] KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Bose-Einstein condensation of exciton polaritons[J]. Nature, 2006, 443(7110): 409-414. doi: 10.1038/nature05131
[6] KUMAR N. Bose-Einstein condensation in a dilute atomic vapour[J]. Current Science (Bangalore), 1995, 69(6): 492-493.
[7] DENG H, WEIHS G, SNOKE D, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity[J]. Proceedings of the National Academy of Sciences, 2003, 100(26): 15318-15323. doi: 10.1073/pnas.2634328100
[8] HAUG H, YAMAMOTO Y, DENG H. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 2010, 82(2): 1489-1537. doi: 10.1103/RevModPhys.82.1489
[9] LIU X, GALFSKY T, SUN Z, et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 2015, 9(1): 30-34. doi: 10.1038/nphoton.2014.304
[10] HEO J, JAHANGIR S, XIAO B, et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity[J]. Nano Lett, 2013, 13(6): 2376-2380. doi: 10.1021/nl400060j
[11] DAS A, HEO J, JANKOWSKI M, et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 2011, 107(6): 66405. doi: 10.1103/PhysRevLett.107.066405
[12] WEI M, RUSECKAS A, MAI V T N, et al. Low threshold room temperature polariton lasing from fluorene-based oligomers[J]. Laser & Photonics Reviews, 2021, 15(8): 2100028.
[13] FORREST S R, KÉNA-COHEN S. Room-temperature polariton lasing in an organic single-crystal microcavity[J]. Nature Photonics, 2010, 4(6): 371-375. doi: 10.1038/nphoton.2010.86
[14] LA ROCCA G C. Polariton lasing[J]. Nature Photonics, 2010, 4(6): 343-345. doi: 10.1038/nphoton.2010.131
[15] TANG J, ZHANG J, LV Y, et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities[J]. Nature Communications, 2021, 12(1): 1-8. doi: 10.1038/s41467-020-20314-w
[16] FRENKEL J. On the transformation of light into heat in solids. Ⅰ[J]. Physical Review, 1931, 37(1): 17-44. doi: 10.1103/PhysRev.37.17
[17] WEI M, RAJENDRAN S K, OHADI H, et al. Low-threshold polariton lasing in a highly disordered conjugated polymer[J]. Optica, 2019, 6(9): 1124-1129. doi: 10.1364/OPTICA.6.001124
[18] MOILANEN A J, ARNARDóTTIR K B, KEELING J, et al. Mode switching dynamics in organic polariton lasing[J]. Physical Review, 2022, B106(19): 195403.
[19] GHOSH P, YU D, HU T, et al. Strong exciton-photon coupling and polariton lasing in GaN microrod[J]. Journal of Materials Science, 2019, 54(11): 8472-8481. doi: 10.1007/s10853-019-03493-w
[20] CHRISTOPOULOS S, VON HOGERSTHAL G B, GRUNDY A J, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405. doi: 10.1103/PhysRevLett.98.126405
[21] ZHAO D, LIU W, ZHU G, et al. Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire[J]. Nano Energy, 2020, 78: 105202. doi: 10.1016/j.nanoen.2020.105202
[22] MASHARIN M A, SAMUSEV A K, BOGDANOV A A, et al. Room-temperature exceptional-point-driven polariton lasing from perovskite metasurface[J]. Advanced Functional Materials, 2023, 33(22): 2215007. doi: 10.1002/adfm.202215007
[23] DAI S, MA Q, LIU M K, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 2015, 10(8): 682-686. doi: 10.1038/nnano.2015.131
[24] BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547. doi: 10.1021/nl400601c
[25] WANG X, CHENG Z, XU K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891. doi: 10.1038/nphoton.2013.241
[26] CHEN J, BADIOLI M, ALONSO-GONZALEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81. doi: 10.1038/nature11254
[27] CHERNIKOV A, ZHANG X, RIGOSI A, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2[J]. Physical Review, 2014, B90(20): 205422.
[28] GU J, CHAKRABORTY B, KHATONIAR M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2[J]. Nature Nanotechnology, 2019, 14(11): 1024-1028. doi: 10.1038/s41565-019-0543-6
[29] XIE P, LIANG Z, LI Z, et al. Coherent and incoherent coupling dynamics in a two-dimensional atomic crystal embedded in a plasmon-induced magnetic resonator[J]. Physical Review, 2020, B101(4): 45403.
[30] WANG S, LE-VAN Q, VAIANELLA F, et al. Limits to strong coupling of excitons in multilayer WS2 with collective plasmonic resonances[J]. ACS Photonics, 2019, 6(2): 286-293. doi: 10.1021/acsphotonics.8b01459
[31] HU T, WANG Y, WU L, et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons[J]. Applied Physics Letters, 2017, 110(5): 51101. doi: 10.1063/1.4974901
[32] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226. doi: 10.1038/nphoton.2015.282
[33] YE Z, CAO T, O BRIEN K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218. doi: 10.1038/nature13734
[34] BERKELBACH T C, HILL H M, RIGOSI A, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 76802. doi: 10.1103/PhysRevLett.113.076802
[35] ZHENG J, BARTON R A, ENGLUND D. Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors[J]. ACS Photonics, 2014, 1(9): 768-774. doi: 10.1021/ph500107b
[36] DUFFERWIEL S, SCHWARZ S, WITHERS F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 2015, 6(1): 1-7.
[37] SCHWARZ S, DUFFERWIEL S, WALKER P M, et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities[J]. Nano Letters, 2014, 14(12): 7003-7008. doi: 10.1021/nl503312x
[38] REED J C, ZHU A Y, ZHU H, et al. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter[J]. Nano Letters, 2015, 15(3): 1967-1971. doi: 10.1021/nl5048303
[39] ZHANG L, WU F, HOU S, et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity[J]. Nature, 2021, 591(7848): 61-65. doi: 10.1038/s41586-021-03228-5
[40] FLATTEN L C, HE Z, COLES D M, et al. Room-temperature exciton-polaritons with two-dimensional WS2[J]. Scientific Reports, 2016, 6: 33134. doi: 10.1038/srep33134
[41] WURDACK M, LUNDT N, KLAAS M, et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer[J]. Nature Communications, 2017, 8: 259. doi: 10.1038/s41467-017-00155-w
[42] WANG S, LI S, CHERVY T, et al. Coherent coupling of WS2 mo-nolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 2016, 16(7): 4368-4374. doi: 10.1021/acs.nanolett.6b01475
[43] GIBBS H M, JAHNKE F, KIRA M, et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 1999, 71(5): 1591-1639. doi: 10.1103/RevModPhys.71.1591
[44] OROSZ L, KAMOUN O, BOUCHOULE S, et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity[J]. Phy-sical Review Letters, 2013, 110(19): 196406. doi: 10.1103/PhysRevLett.110.196406
[45] RÉVERET F, MALLET E, DISSEIX P, et al. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO[J]. Physical Review, 2016, B93(11): 115205.
[46] DASKALAKIS K S, MAIER S A, MURRAY R, et al. Nonlinear interactions in an organic polariton condensate[J]. Nature Materials, 2014, 13(3): 271-278. doi: 10.1038/nmat3874
[47] DENG H, WEIHS G, SNOKE D, et al. Condensation of semiconductor microcavity exciton polaritons[J]. Science, 2002, 298(5591): 199-202. doi: 10.1126/science.1074464
[48] von HÖGERSTHAL G B H, GRUNDY A J D, LAGOUDAKIS P G, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405. doi: 10.1103/PhysRevLett.98.126405
[49] ZHANG S, CHEN J, SHI J, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity[J]. ACS Photonics, 2020, 7(2): 327-337. doi: 10.1021/acsphotonics.9b01240
[50] LIU X, BAO W, LI Q, et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide[J]. Physical Review Letters, 2017, 119(2): 27403. doi: 10.1103/PhysRevLett.119.027403
[51] WALDHERR M, LUNDT N, KLAAS M, et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity[J]. Nature Communications, 2018, 9(1): 1-6. doi: 10.1038/s41467-017-02088-w
[52] ANTON-SOLANAS C, WALDHERR M, KLAAS M, et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal[J]. Nature Materials, 2021, 20(9): 1233-1239. doi: 10.1038/s41563-021-01000-8
[53] ZHAO J, SU R, FIERAMOSCA A, et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature[J]. Nano Letters, 2021, 21(7): 3331-3339. doi: 10.1021/acs.nanolett.1c01162
[54] CHEN X, ALNATAH H, MAO D, et al. Bose condensation of upper-branch exciton-polaritons in a transferable microcavity[J]. Nano Letters, 2023, 23(20): 9538-9546. doi: 10.1021/acs.nanolett.3c03123
[55] BLANCON J C, STIER A V, TSAI H, et al. Scaling law for exci-tons in 2D perovskite quantum wells[J]. Nature Communications, 2018, 9(1): 1-10. doi: 10.1038/s41467-017-02088-w
[56] BLANCON J, EVEN J, STOUMPOS C C, et al. Semiconductor physics of organic-inorganic 2D halide perovskites[J]. Nature Nanotechnology, 2020, 15(12): 969-985. doi: 10.1038/s41565-020-00811-1
[57] FIERAMOSCA A, POLIMENO L, ARDIZZONE V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature[J]. Science Advances, 5(5): eaav9967. doi: 10.1126/sciadv.aav9967
[58] ZHANG L, LIANG W. How the structures and properties of two-dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers[J]. The Journal of Physical Chemistry Letters, 2017, 8(7): 1517-1523. doi: 10.1021/acs.jpclett.6b03005
[59] HUANG H, BODNARCHUK M I, KERSHAW S V, et al. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance[J]. ACS Energy Letters, 2017, 2(9): 2071-2083. doi: 10.1021/acsenergylett.7b00547
[60] PEDESSEAU L, SAPORI D, TRAORE B, et al. Advances and promises of layered halide hybrid perovskite semiconductors[J]. ACS Nano, 2016, 10(11): 9776-9786. doi: 10.1021/acsnano.6b05944
[61] SAPAROV B, MITZI D. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596. doi: 10.1021/acs.chemrev.5b00715
[62] WANG J, SU R, XING J, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite[J]. ACS Nano, 2018, 12(8): 8382-8389. doi: 10.1021/acsnano.8b03737
[63] YEN M, LEE C, YAO Y, et al. Tamm-plasmon exciton-polaritons in single-monolayered CsPbBr3 quantum dots at room temperature[J]. Advanced Optical Materials, 2023, 11(4): 2202326. doi: 10.1002/adom.202202326
[64] POLIMENO L, FIERAMOSCA A, LERARIO G, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites[J]. Advanced Optical Materials, 2020, 8(16): 2000176.
[65] LANTY G, LAURET J S, DELEPORTE E, et al. UV polaritonic emission from a perovskite-based microcavity[J]. Applied Physics Letters, 2008, 93(8): 81101.
[66] WU J Z, LONG H, SHI X L, et al. Polariton lasing in InGaN quantum wells at room temperature[J]. Opto-Electronic Advances, 2019, 2(12): 190014.
[67] BAUMBERG J J, CHRISTOPOULOS S, von HOGERSTHAL G B H, et al. Room temperature polariton lasing and BEC in semiconductor microcavities[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, CA, USA: IEEE Press, 2008: 1-2
[68] DAS A, HEO J, GUO W, et al. Room temperature polariton lasing in a single ZnO nanowire microcavity[C]//2012 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE Press, 2012: 1-2
[69] KANG J W, SONG B, LIU W J, et al. Room temperature polariton lasing in quantum heterostructure nanocavities[J]. Science Advances, 2019, 5(4): eaau9338.
[70] AL-ANI I A M, AS'HAM K, ALALOUL M, et al. Quasibound states in continuum-induced double strong coupling in perovskite and WS2 monolayers[J]. Physical Review, 2023, B108(4): 45420.