[1] |
SU R, DIEDERICHS C, WANG J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets[J]. Nano Letters, 2017, 17(6): 3982-3988. doi: 10.1021/acs.nanolett.7b01956 |
[2] |
RAM R J, PAU S, YAMAMOTO Y, et al. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers[J]. Physical Review, 1996, A53(6): 4250-4253. |
[3] |
CIUTI C, BAUMBERG J J, TEJEDOR C, et al. Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities[J]. Physical Review, 2002, B66(8): 85304. |
[4] |
MALPUECH G, DI CARLO A, KAVOKIN A, et al. Room-temperature polariton lasers based on GaN microcavities[J]. Applied Physics Letters, 2002, 81(3): 412-414. doi: 10.1063/1.1494126 |
[5] |
KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Bose-Einstein condensation of exciton polaritons[J]. Nature, 2006, 443(7110): 409-414. doi: 10.1038/nature05131 |
[6] |
KUMAR N. Bose-Einstein condensation in a dilute atomic vapour[J]. Current Science (Bangalore), 1995, 69(6): 492-493. |
[7] |
DENG H, WEIHS G, SNOKE D, et al. Polariton lasing vs. photon lasing in a semiconductor microcavity[J]. Proceedings of the National Academy of Sciences, 2003, 100(26): 15318-15323. doi: 10.1073/pnas.2634328100 |
[8] |
HAUG H, YAMAMOTO Y, DENG H. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 2010, 82(2): 1489-1537. doi: 10.1103/RevModPhys.82.1489 |
[9] |
LIU X, GALFSKY T, SUN Z, et al. Strong light-matter coupling in two-dimensional atomic crystals[J]. Nature Photonics, 2015, 9(1): 30-34. doi: 10.1038/nphoton.2014.304 |
[10] |
HEO J, JAHANGIR S, XIAO B, et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity[J]. Nano Lett, 2013, 13(6): 2376-2380. doi: 10.1021/nl400060j |
[11] |
DAS A, HEO J, JANKOWSKI M, et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 2011, 107(6): 66405. doi: 10.1103/PhysRevLett.107.066405 |
[12] |
WEI M, RUSECKAS A, MAI V T N, et al. Low threshold room temperature polariton lasing from fluorene-based oligomers[J]. Laser & Photonics Reviews, 2021, 15(8): 2100028. |
[13] |
FORREST S R, KÉNA-COHEN S. Room-temperature polariton lasing in an organic single-crystal microcavity[J]. Nature Photonics, 2010, 4(6): 371-375. doi: 10.1038/nphoton.2010.86 |
[14] |
LA ROCCA G C. Polariton lasing[J]. Nature Photonics, 2010, 4(6): 343-345. doi: 10.1038/nphoton.2010.131 |
[15] |
TANG J, ZHANG J, LV Y, et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities[J]. Nature Communications, 2021, 12(1): 1-8. doi: 10.1038/s41467-020-20314-w |
[16] |
FRENKEL J. On the transformation of light into heat in solids. Ⅰ[J]. Physical Review, 1931, 37(1): 17-44. doi: 10.1103/PhysRev.37.17 |
[17] |
WEI M, RAJENDRAN S K, OHADI H, et al. Low-threshold polariton lasing in a highly disordered conjugated polymer[J]. Optica, 2019, 6(9): 1124-1129. doi: 10.1364/OPTICA.6.001124 |
[18] |
MOILANEN A J, ARNARDóTTIR K B, KEELING J, et al. Mode switching dynamics in organic polariton lasing[J]. Physical Review, 2022, B106(19): 195403. |
[19] |
GHOSH P, YU D, HU T, et al. Strong exciton-photon coupling and polariton lasing in GaN microrod[J]. Journal of Materials Science, 2019, 54(11): 8472-8481. doi: 10.1007/s10853-019-03493-w |
[20] |
CHRISTOPOULOS S, VON HOGERSTHAL G B, GRUNDY A J, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405. doi: 10.1103/PhysRevLett.98.126405 |
[21] |
ZHAO D, LIU W, ZHU G, et al. Surface plasmons promoted single-mode polariton lasing in a subwavelength ZnO nanowire[J]. Nano Energy, 2020, 78: 105202. doi: 10.1016/j.nanoen.2020.105202 |
[22] |
MASHARIN M A, SAMUSEV A K, BOGDANOV A A, et al. Room-temperature exceptional-point-driven polariton lasing from perovskite metasurface[J]. Advanced Functional Materials, 2023, 33(22): 2215007. doi: 10.1002/adfm.202215007 |
[23] |
DAI S, MA Q, LIU M K, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 2015, 10(8): 682-686. doi: 10.1038/nnano.2015.131 |
[24] |
BRAR V W, JANG M S, SHERROTT M, et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators[J]. Nano Letters, 2013, 13(6): 2541-2547. doi: 10.1021/nl400601c |
[25] |
WANG X, CHENG Z, XU K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891. doi: 10.1038/nphoton.2013.241 |
[26] |
CHEN J, BADIOLI M, ALONSO-GONZALEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81. doi: 10.1038/nature11254 |
[27] |
CHERNIKOV A, ZHANG X, RIGOSI A, et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2[J]. Physical Review, 2014, B90(20): 205422. |
[28] |
GU J, CHAKRABORTY B, KHATONIAR M, et al. A room-temperature polariton light-emitting diode based on monolayer WS2[J]. Nature Nanotechnology, 2019, 14(11): 1024-1028. doi: 10.1038/s41565-019-0543-6 |
[29] |
XIE P, LIANG Z, LI Z, et al. Coherent and incoherent coupling dynamics in a two-dimensional atomic crystal embedded in a plasmon-induced magnetic resonator[J]. Physical Review, 2020, B101(4): 45403. |
[30] |
WANG S, LE-VAN Q, VAIANELLA F, et al. Limits to strong coupling of excitons in multilayer WS2 with collective plasmonic resonances[J]. ACS Photonics, 2019, 6(2): 286-293. doi: 10.1021/acsphotonics.8b01459 |
[31] |
HU T, WANG Y, WU L, et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons[J]. Applied Physics Letters, 2017, 110(5): 51101. doi: 10.1063/1.4974901 |
[32] |
MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 2016, 10(4): 216-226. doi: 10.1038/nphoton.2015.282 |
[33] |
YE Z, CAO T, O BRIEN K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218. doi: 10.1038/nature13734 |
[34] |
BERKELBACH T C, HILL H M, RIGOSI A, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 76802. doi: 10.1103/PhysRevLett.113.076802 |
[35] |
ZHENG J, BARTON R A, ENGLUND D. Broadband coherent absorption in chirped-planar-dielectric cavities for 2D-material-based photovoltaics and photodetectors[J]. ACS Photonics, 2014, 1(9): 768-774. doi: 10.1021/ph500107b |
[36] |
DUFFERWIEL S, SCHWARZ S, WITHERS F, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities[J]. Nature Communications, 2015, 6(1): 1-7. |
[37] |
SCHWARZ S, DUFFERWIEL S, WALKER P M, et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities[J]. Nano Letters, 2014, 14(12): 7003-7008. doi: 10.1021/nl503312x |
[38] |
REED J C, ZHU A Y, ZHU H, et al. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter[J]. Nano Letters, 2015, 15(3): 1967-1971. doi: 10.1021/nl5048303 |
[39] |
ZHANG L, WU F, HOU S, et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity[J]. Nature, 2021, 591(7848): 61-65. doi: 10.1038/s41586-021-03228-5 |
[40] |
FLATTEN L C, HE Z, COLES D M, et al. Room-temperature exciton-polaritons with two-dimensional WS2[J]. Scientific Reports, 2016, 6: 33134. doi: 10.1038/srep33134 |
[41] |
WURDACK M, LUNDT N, KLAAS M, et al. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe2 monolayer[J]. Nature Communications, 2017, 8: 259. doi: 10.1038/s41467-017-00155-w |
[42] |
WANG S, LI S, CHERVY T, et al. Coherent coupling of WS2 mo-nolayers with metallic photonic nanostructures at room temperature[J]. Nano Letters, 2016, 16(7): 4368-4374. doi: 10.1021/acs.nanolett.6b01475 |
[43] |
GIBBS H M, JAHNKE F, KIRA M, et al. Nonlinear optics of normal-mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 1999, 71(5): 1591-1639. doi: 10.1103/RevModPhys.71.1591 |
[44] |
OROSZ L, KAMOUN O, BOUCHOULE S, et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity[J]. Phy-sical Review Letters, 2013, 110(19): 196406. doi: 10.1103/PhysRevLett.110.196406 |
[45] |
RÉVERET F, MALLET E, DISSEIX P, et al. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO[J]. Physical Review, 2016, B93(11): 115205. |
[46] |
DASKALAKIS K S, MAIER S A, MURRAY R, et al. Nonlinear interactions in an organic polariton condensate[J]. Nature Materials, 2014, 13(3): 271-278. doi: 10.1038/nmat3874 |
[47] |
DENG H, WEIHS G, SNOKE D, et al. Condensation of semiconductor microcavity exciton polaritons[J]. Science, 2002, 298(5591): 199-202. doi: 10.1126/science.1074464 |
[48] |
von HÖGERSTHAL G B H, GRUNDY A J D, LAGOUDAKIS P G, et al. Room-temperature polariton lasing in semiconductor microcavities[J]. Physical Review Letters, 2007, 98(12): 126405. doi: 10.1103/PhysRevLett.98.126405 |
[49] |
ZHANG S, CHEN J, SHI J, et al. Trapped exciton-polariton condensate by spatial confinement in a perovskite microcavity[J]. ACS Photonics, 2020, 7(2): 327-337. doi: 10.1021/acsphotonics.9b01240 |
[50] |
LIU X, BAO W, LI Q, et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide[J]. Physical Review Letters, 2017, 119(2): 27403. doi: 10.1103/PhysRevLett.119.027403 |
[51] |
WALDHERR M, LUNDT N, KLAAS M, et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity[J]. Nature Communications, 2018, 9(1): 1-6. doi: 10.1038/s41467-017-02088-w |
[52] |
ANTON-SOLANAS C, WALDHERR M, KLAAS M, et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal[J]. Nature Materials, 2021, 20(9): 1233-1239. doi: 10.1038/s41563-021-01000-8 |
[53] |
ZHAO J, SU R, FIERAMOSCA A, et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature[J]. Nano Letters, 2021, 21(7): 3331-3339. doi: 10.1021/acs.nanolett.1c01162 |
[54] |
CHEN X, ALNATAH H, MAO D, et al. Bose condensation of upper-branch exciton-polaritons in a transferable microcavity[J]. Nano Letters, 2023, 23(20): 9538-9546. doi: 10.1021/acs.nanolett.3c03123 |
[55] |
BLANCON J C, STIER A V, TSAI H, et al. Scaling law for exci-tons in 2D perovskite quantum wells[J]. Nature Communications, 2018, 9(1): 1-10. doi: 10.1038/s41467-017-02088-w |
[56] |
BLANCON J, EVEN J, STOUMPOS C C, et al. Semiconductor physics of organic-inorganic 2D halide perovskites[J]. Nature Nanotechnology, 2020, 15(12): 969-985. doi: 10.1038/s41565-020-00811-1 |
[57] |
FIERAMOSCA A, POLIMENO L, ARDIZZONE V, et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature[J]. Science Advances, 5(5): eaav9967. doi: 10.1126/sciadv.aav9967 |
[58] |
ZHANG L, LIANG W. How the structures and properties of two-dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers[J]. The Journal of Physical Chemistry Letters, 2017, 8(7): 1517-1523. doi: 10.1021/acs.jpclett.6b03005 |
[59] |
HUANG H, BODNARCHUK M I, KERSHAW S V, et al. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance[J]. ACS Energy Letters, 2017, 2(9): 2071-2083. doi: 10.1021/acsenergylett.7b00547 |
[60] |
PEDESSEAU L, SAPORI D, TRAORE B, et al. Advances and promises of layered halide hybrid perovskite semiconductors[J]. ACS Nano, 2016, 10(11): 9776-9786. doi: 10.1021/acsnano.6b05944 |
[61] |
SAPAROV B, MITZI D. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596. doi: 10.1021/acs.chemrev.5b00715 |
[62] |
WANG J, SU R, XING J, et al. Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite[J]. ACS Nano, 2018, 12(8): 8382-8389. doi: 10.1021/acsnano.8b03737 |
[63] |
YEN M, LEE C, YAO Y, et al. Tamm-plasmon exciton-polaritons in single-monolayered CsPbBr3 quantum dots at room temperature[J]. Advanced Optical Materials, 2023, 11(4): 2202326. doi: 10.1002/adom.202202326 |
[64] |
POLIMENO L, FIERAMOSCA A, LERARIO G, et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites[J]. Advanced Optical Materials, 2020, 8(16): 2000176. |
[65] |
LANTY G, LAURET J S, DELEPORTE E, et al. UV polaritonic emission from a perovskite-based microcavity[J]. Applied Physics Letters, 2008, 93(8): 81101. |
[66] |
WU J Z, LONG H, SHI X L, et al. Polariton lasing in InGaN quantum wells at room temperature[J]. Opto-Electronic Advances, 2019, 2(12): 190014. |
[67] |
BAUMBERG J J, CHRISTOPOULOS S, von HOGERSTHAL G B H, et al. Room temperature polariton lasing and BEC in semiconductor microcavities[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, CA, USA: IEEE Press, 2008: 1-2 |
[68] |
DAS A, HEO J, GUO W, et al. Room temperature polariton lasing in a single ZnO nanowire microcavity[C]//2012 Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA: IEEE Press, 2012: 1-2 |
[69] |
KANG J W, SONG B, LIU W J, et al. Room temperature polariton lasing in quantum heterostructure nanocavities[J]. Science Advances, 2019, 5(4): eaau9338. |
[70] |
AL-ANI I A M, AS'HAM K, ALALOUL M, et al. Quasibound states in continuum-induced double strong coupling in perovskite and WS2 monolayers[J]. Physical Review, 2023, B108(4): 45420. |