[1] 韩春阳, 王召斌, 王占, 等. 触头材料及其性能测试技术概述[J]. 电工材料, 2019, 47(1): 27-30. doi: 10.16786/j.cnki.1671-8887.eem.2019.01.006HAN Ch Y, WANG Zh B, WANG Zh, et al. Development of contact material and its performance testing technology[J]. Electrical Engineering Materials, 2019, 47(1): 27-30(in Chinese). doi: 10.16786/j.cnki.1671-8887.eem.2019.01.006
[2] 蒋德志, 章杰, 白娅玲, 等. AgNi触头材料应用性能及其主要制备工艺[J]. 电工材料, 2014, 42(3): 19-23. doi: 10.3969/j.issn.1671-8887.2014.03.005JIANG D Zh, ZHANG J, BAI Y L, et al. Application performance and preparation technology of AgNi contact materials[J]. Electrical Engineering Materials, 2014, 42(3): 19-23(in Chinese). doi: 10.3969/j.issn.1671-8887.2014.03.005
[3] 李庆楠, 薄凯, 周学, 等. 低速分断条件下银基触头材料液桥特性试验研究[J]. 电器与能效管理技术, 2016, 58(15): 54-58.LI Q N, BAO K, ZHOU X, et al. Experimental study on feature of molten bridge of silver based contacts under slow separation[J]. Electrical & Energy Management Technology, 2016, 58(15): 54-58(in Chinese).
[4] 郭天福, 付翀, 王俊勃, 等. 含添加剂的AgNi触头材料研究进展[J]. 电工材料, 2015, 58(2): 34-38. doi: 10.3969/j.issn.1671-8887.2015.02.008GUO T F, FU Ch, WANG J B, et al. Research and progress of silver-nickel contact materials containing additives[J]. Electrical Engineering Materials, 2015, 58(2): 34-38(in Chinese). doi: 10.3969/j.issn.1671-8887.2015.02.008
[5] 陈宏燕, 谢明, 王锦, 等. 银氧化锡电触头材料研究现状及发展趋势[J]. 贵金属, 2011, 32(2): 77-81. doi: 10.3969/j.issn.1004-0676.2011.02.016CHEN H Y, XIE M, WANG J, et al. The advances and developmental trend of Ag/SnO2 electrical contact material[J]. Precious Metals, 2011, 32(2): 77-81(in Chinese). doi: 10.3969/j.issn.1004-0676.2011.02.016
[6] ZEER G M, ZELENKOVA E G, SIDORAK A V, et al. A silver-based electrocontact material dispersion-strengthened with zinc, tin, and titanium oxides[J]. Technical Physics, 2020, 65(8): 1253-1260. doi: 10.1134/S106378422008023X
[7] BIYIK S, ARSLAN F, AYDIN M. Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying[J]. Journal of Electronic Materials, 2015, 44(1): 457-466. doi: 10.1007/s11664-014-3399-4
[8] HE Q, YANG H, CHEN L, et al. Study on the mechanical alloying process for preparing Ag/LSCO electrical contact material[J]. Procedia Engineering, 2014, 94: 37-43. doi: 10.1016/j.proeng.2013.11.047
[9] LIU Y, GAO M, XU S, et al. Study on electroconductive tribological properties of Ag-based composite coating[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(8): 1405-1413. doi: 10.1007/s12541-019-00140-x
[10] HAO X, WANG X, ZHOU S, et al. Microstructure and properties of silver matrix composites reinforced with Ag-doped graphene[J]. Materials Chemistry and Physics, 2018, 215: 327-331. doi: 10.1016/j.matchemphys.2018.05.036
[11] WANG P, WEI Z, SHEN M, et al. In-situ synthesized silver-graphene nanocomposite with enhanced electrical and mechanical pro-perties[C]//IEEE Holm Conference on Electrical Contact. Denver, USA: Institute of Electrical and Electronics Engineers, 2017: 225-228.
[12] NAGHDI S, RHEE K Y, PARK S J. A catalytic, catalyst-free, and roll-to-roll production of graphene via chemical vapor deposition: Low temperature growth[J]. Carbon, 2018, 127: 1-12.
[13] LIN L, DENG B, SUN J Y, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Reviews, 2018, 118(18): 9281-9343.
[14] 管振宏, 于镇洋, 乔志军, 等. 化学气相沉积法制备原位生长三维石墨烯/铜基复合材料[J]. 材料科学与工程学报, 2021, 39(4): 575-579.GUAN Zh H, YU Zh Y, QIAO Zh J, et al. Preparation of irrsitu growth three-dimensional Cu@graphene composite by chemical vapor deposition[J]. Journal of Materials Science & Engineering, 2021, 39(4): 575-579(in Chinese).
[15] 孙正阳, 季凌飞, 林真源, 等. 激光分解4H-SiC制备石墨烯层的晶面取向影响研究[J]. 中国激光, 2020, 47(8): 0802002.SUN Zh Y, JI L F, LIN Zh Y, et al. Effect of crystal orientation on synthesis of graphene layers by laser decomposition of 4H-SiC[J]. Chinese Journal of Lasers, 2020, 47(8): 0802002(in Chinese).
[16] 叶晓慧. 激光快速原位制备石墨烯及其耐腐蚀性研究[D]. 北京: 清华大学, 2015: 35-59.YE X H. Rapid laser in-situ growth of graphene and its anti-corrosion performance[D]. Beijing: Tsinghua University, 2015: 35-59(in Chinese).
[17] YE X H, LONG J Y, LIN Zh, et al. Direct laser fabrication of large-area and patterned graphene at room temperature[J]. Carbon, 2014, 68: 784-790.
[18] YE X H, LIN Zh, ZHANG H J, et al. Protecting carbon steel from corrosion by laser in situ grown graphene films[J]. Carbon, 2015, 94: 326-334.
[19] 刘壮, 方菊, 李元成, 等. 飞秒激光加工SiC/SiC复合材料厚板的孔型特征研究[J]. 激光技术, 2022, 46(6): 736-741.LIU Zh, FANG J, LI Y Ch, et al. Pore characteristics of SiC/SiC composite thick plate machined by femtosecond laser[J]. Laser Technology, 2022, 46(6): 736-741(in Chinese).
[20] 李镭昌, 魏昕. 激光熔覆复合涂层WC对裂纹产生机理影响研究[J]. 激光技术, 2023, 47(1): 52-58.LI L Ch, WEI Ch. Influence of WC on crack formation mechanism of laser cladding composite coating[J]. Laser Technology, 2023, 47(1): 52-58(in Chinese).
[21] 周辽, 龙芋宏, 焦辉, 等. 激光加工碳纤维增强复合材料研究进展[J]. 激光技术, 2022, 46(1): 110-119.ZHOU L, LONG Y H, JIAO H, et al. Research advancement on laser processing carbon fiber reinforced plastics[J]. Laser Technology, 2022, 46(1): 110-119(in Chinese).
[22] 徐国辉, 李喜春, 董彬, 等. 激光制备新型石墨烯/铜基复合触头[J]. 激光技术, 2023, 47(2): 225-232.XU G H, LI X Ch, DONG B, et al. A novel graphene/copper hybrid electrical contact fabrication by laser processing[J]. Laser Technology, 2023, 47(2): 225-232(in Chinese).
[23] 王振宇. 银镍、银铁电触头技术条件: GB/T 5588-2017[S]. 北京: 中国标准出版社, 2017.WANG Zh Y. Technical specification for silver-nickel, silver-iron electrical contacts: GB/T 5588-2017[S]. Beijing: China Standard Press, 2017(in Chinese).
[24] LIN Zh J, FAN S Y, LIU M M, et al. Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact material[J]. Journal of Alloys and Compounds, 2019, 788: 163-171.
[25] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
[26] BLEU Y, BOURQUARD F, LOIR A S, et al. Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing[J]. Journal of Raman Spectroscopy, 2019, 50(11): 1630-1641.