[1] YAN M Q, ZHU H K, LUO H N, et al. Daily ex1posure to environmental volatile organic compounds triggers oxidative damage: Evidence from a large-scale survey in China[J]. Environmental Science & Technology, 2023, 57(49): 20501-20509.
[2] CHOI Y H, KIM H J, SOHN J R, et al. Occupational exposure to VOC and carbonyl compounds in beauty salons and health risks associated with it in South Korea[J]. Ecotoxicology and Environmental Safety, 2023, 256: 114837. doi: 10.1016/j.ecoenv.2023.114837
[3] HUANGE Y X, D K, XIONG Y, et al. One-third of global population at cancer risk due to elevated volatile organic compounds levels[J/OL]. Research Square: (2023-09)[2024-01-11]. https://doi.org/10.21203/rs.3.rs-3320416/v1.
[4] NARANJO E, BALIGA S, BERNASCOLLE P F, et al. IR gas imaging in an industrial setting[J]. Proceedings of the SPIE, 2010, 7661: 7661K.
[5] RANGEL J, SCHMOLL R, KROLL A. Catadioptric stereo optical gas imaging system for scene flow computation of gas structures[J]. IEEE Sensors Journal, 2021, 21(5): 6811-6820. doi: 10.1109/JSEN.2020.3042116
[6] HUSEIN A M, CALVIN, HALIM D, et al. Motion detect application with frame difference method on a surveillance camera[J]. Journal of Physics: Conference Series, 2019, 12309(1): 012017.
[7] WANG L M, TONG Zh, JI B, et al. Temporal difference networks for efficient action recognition[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, USA: IEEE Press, 2021: 1895-1904. .
[8] XIN Y H, HOU J, DONG L M, et al. A self-adaptive optical flow method for the moving object detection in the video sequences[J]. Optik—International Journal for Light and Electron Optics, 2014, 125(19): 5690-5694. doi: 10.1016/j.ijleo.2014.06.092
[9] WANG X, FENG L I, XIN L, et al. Moving targets detection for sa-tellite-based surveillance video[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE Press, 2019: 5492-5495.
[10] HE W, LI J X, QI Q, et al. SIM-MFR: Spatial interactions mechanisms based multi-feature representation for background modeling[J]. Journal of Visual Communication and Image Representation, 2022, 88: 103622. doi: 10.1016/j.jvcir.2022.103622
[11] 王建平, 李俊山, 杨亚威, 等. 基于红外成像的乙烯气体泄漏检测[J]. 液晶与显示, 2014, 29(4): 623-628.WANG J P, LI J Sh, YANG Y W, et al. Ethylene gas leakage detection based on infrared imaging[J]. Journal of Liquid Crystals and Displays, 2014, 29(4): 623-628(in Chinese).
[12] 刘路民根, 张耀宗, 栾琳, et al. 一种基于形状的红外图像泄漏气体检测方法[J]. 应用光学, 2019, 40(3): 468-472.LIU L M G, ZHANG Y Z, LUAN L, et al. A shape-based infrared image gas leakage detection method[J]. Journal of Applied Optics, 2019, 40(3): 468-472(in Chinese).
[13] HONG Sh Zh, YING H, YU H W, et al. A VOC gas detection algorithm based on infrared thermal imaging[C]//2019 Chinese Control and Decision Conference (CCDC). Nanchang, China: IEEE Press, 2019: 329-334.
[14] BADAWI D, PAN H Y, CETIN S C C, et al. Computationally efficient spatio-temporal dynamic texture recognition for volatile organic compound (VOC) leakage detection in industrial plants[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(4): 676-687. doi: 10.1109/JSTSP.2020.2976555
[15] XU Y, DONG J X, ZHANG B, et al. Background modeling methods in video analysis: A review and comparative evaluation[J]. CAAI Transactions on Intelligence Technology, 2016, 1(1): 43-60.
[16] ZHENG Y, FAN L Zh. Moving object detection based on running average background and temporal difference[C]//2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering. Hangzhou, China: IEEE Press, 2010: 270-272.
[17] MEGHANA R K, CHITKARA Y, MOHANA A. Background-mo-delling techniques for foreground detection and tracking using Gaussian mixture model[C]//2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). Erode, India: IEEE Press, 2019: 1129-1134.
[18] ZHU M Zh, WANGE H B. Fast detection of moving object based on improved frame-difference method[C]//2017 6th International Conference on Computer Science and Network Technology (ICCSNT). Dalian, China: IEEE Press, 2017: 299-303.
[19] 费宬, 康佳龙, 刘俊良, 等. 基于FPGA的短波红外图像灰度级拉伸算法实现[J]. 太赫兹科学与电子信息学报, 2022, 20(7): 713-717.FEI F, KANG J L, LIU J L, et al. Implementation of short-wave infrared image gray-level stretching algorithm based on FPGA[J]. Journal of Terahertz Science and Electronic Information, 2022, 20(7): 713-717(in Chinese).
[20] 周永康, 朱尤攀, 曾邦泽, 等. 宽动态红外图像增强算法综述[J]. 激光技术, 2018, 42(5): 718-726.ZHOU Y K, ZHU Y P, ZENG B Z, et al. A review of wide dynamic range infrared image enhancement algorithms[J]. Laser Technology, 2018, 42(5): 718-726(in Chinese).
[21] 魏艳平. 线性变换与局部均衡融合的红外图像增强[J]. 激光技术, 2024, 48(5): 705-710.WEI Y P. Infrared image enhancement using linear transformation and local equalization fusion[J]. Laser Technology, 2024, 48(5): 705-710(in Chinese).
[22] WANG Y C, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-free bies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, Canada: IEEE Press, 2023: 7464-7475.
[23] CHENG Y H, YIN J L, CHEN B H, et al. Smoke 100k: A database for smoke detection[C]//2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). Osaka, Japan: IEEE Press, 2019: 596-597.