[1] WANG R, XU S, LI W, et al. Optical fiber current sensor research: review and outlook[J]. Optical and Quantum Electronics, 2016, 48(9): 442. doi: 10.1007/s11082-016-0719-3
[2] QI X, YIN X, LI G, et al. A construction method for the simulation platform for the analysis of the current transformer[J]. Power System Protection and Control, 2015, 43(22): 69-76.
[3] LI Y, ZHANG W, LIU X, et al. Characteristic analysis and experiment of adaptive fiber optic current sensor technology[J]. Applied Sciences, 2019, 9(2): 333. doi: 10.3390/app9020333
[4] BOHNERT K, BRANDLE H, BRUNZEL M G, et al. Highly accurate fiber-optic DC current sensor for the electrowinning industry[J]. IEEE Transactions on Industry Applications, 2007, 43(1): 180-187. doi: 10.1109/TIA.2006.887311
[5] WANG Y L, KANG M H, REN L Y, et al. Design of spun high-birefringent fiber for fiber optic current sensor[J]. Infrared and Laser Engineering, 2015, 44(1): 170-175(in Chinese).
[6] HUANG J, WANG J. Key technology of optical current transformer[J]. Electric Power Automation Equipment, 2009, 29(12): 94-97.
[7] MADDEN W L, MICHIE W C, CRUDEN A, et al. Temperature compensation for optical current sensors[J]. Optical Engineering, 1999, 38(10): 1699-1707. doi: 10.1117/1.602222
[8] TANG D, ROSE A H, DAY G W, et al. Annealing of linear birefringence in single-mode fiber coils: Application to optical fiber current sensors[J]. Journal of Lightwave Technology, 1991, 9(8): 1031-1037. doi: 10.1109/50.84170
[9] ULRICH R, SIMON A. Polarization optics of twisted single-mode fibers[J]. Applied Optics, 1979, 18(13): 2241-2251. doi: 10.1364/AO.18.002241
[10] LI Zh Y, MENG Y Ch, HAO X Y. Spun high birefringence all-fiber current transfroms[J]. Laser & Optoelectronics Progress, 2017, 54(2): 020601 (in Chinese).
[11] DREXLER P, FIALA P. Utilization of faraday mirror in fiber optic current sensors[J]. Radio Engineering, 2008, 17(4): 101-107.
[12] SILVA R M, MARTINS H, NASCIMENTO I, et al. Optical current sensors for high power systems: A review[J]. Applied Sciences, 2012, 2(3): 602-628. doi: 10.3390/app2030602
[13] NING Y N, WANG Z P, PALMER A W, et al. Recent progress in optical current sensing techniques[J]. Review of Scientific Instruments, 1995, 66(5): 3097-3111. doi: 10.1063/1.1145537
[14] PAPP A, HARMS H. Magnetooptical current transformer 1: Principles[J]. Applied Optics, 1980, 19(22): 3729-3734. doi: 10.1364/AO.19.003729
[15] YANG X Y, LIAO Y B, WU G Sh, et al. Analysis of detection system of fiber current sensors[J]. Chinese Journal of Lasers, 1987, 14(5): 312-316(in Chinese).
[16] ZHANG H. Research on all-fiber current sensor based on loop archcture[D]. Fuzhou: Fujian Normal University, 2014: 13-39 (in Ch-inese).
[17] WU J, ZHANG X. Recent progress of all fiber optic current transformers [J/OL]. (2020-09-25) [2021-05-19]. https://ieeexplore.ieee.org/document/9356627.
[18] BLAKE J N, TANTASWADI P, CARVALHO R. All-fiber in-line Sagnac interferometer current sensor[J/OL]. (1995-01-01) [2021-5-19]. https://www.ixueshu.com/document/352f8fc78d19f5773 18947a18e7f9386.html.
[19] BLAKE J, TANTASWADI P. In-line Sagnac interferometer current sensor[J]. IEEE Transactions on Power Delivery, 1996, 11(1): 116-121. doi: 10.1109/61.484007
[20] WANG Zh, CHU F H, WU J P. Progress in all-fiber current sensor temperature compensation[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120005 (in Chinese).
[21] WANG X X, WANG Y, QIN Y, et al. Ratio error of all fiber optical current transformer caused by mean wavelength's fluctuation[J]. Infrared and Laser Engineering, 2015, 44(1): 233-238(in Chin-ese).
[22] MOHR F. Thermo-optically induced bias drift in fiber optical Sagnac interferometers[J]. Journal of Lightwave Technology, 2002, 14(1): 27-41.
[23] WANG X X, ZHANG Ch X, ZHANG Ch Y, et al. Research on temperature characteristic of quarter-waveplate and its effect on fiber optical current transformers[J]. Laser & Infrared, 2006, 36(7): 596-598 (in Chinese).
[24] HE Ch G, ZHANG Y J, LIU G H, et al. Design and experimental study on temperature control circuit of semiconductor laser[J]. Electronic Measurement Technology, 2017, 40(8): 27-31 (in Chin-ese).
[25] XIANG X, YIN W, HUANG J. A practical design of an analog thermal-control circuit[J]. Electronic Science and Technology, 2014, 27(4): 124-127 (in Chinese).
[26] GAO H, WANG G, GAO W, et al. A chiral photonic crystal fiber sensing coil for decreasing the polarization error in a fiber optic cu-rrent sensor[J]. Optics Communications, 2020, 469: 125755. doi: 10.1016/j.optcom.2020.125755
[27] YANG H, QIAO L, YANG Y, et al. Thermally induced error analysis and suppression of optic fiber delay loop in the different variable rate of temperature[J]. Optik, 2019, 193: 1-15.
[28] MULLER G M, FRANK A, YANG L, et al. Temperature compensation of interferometric and polarimetric fiber-optic current sensors with spun highly birefringent fiber[J]. Journal of Lightwave Technology, 2019, 37(18): 4507-4513. doi: 10.1109/JLT.2019.2907803
[29] HU H, HUANG J, XIA L, et al. The compensation of long-term temperature induced error in the all fiber current transformer through optimizing initial phase delay in λ/4 wave-plate[J]. Microwave and Optical Technology Letters, 2019, 61(7): 1769-1773. doi: 10.1002/mop.31793
[30] MULLER G M, FRANK A, YANG L, et al. Temperature compensation of interferometric and polarimetric fiber-optic current sensors with spun highly birefringent fiber[J]. Journal of Lightwave Technology, 2019, 37(18): 4507-4513. doi: 10.1109/JLT.2019.2907803
[31] QIAN Sh T, LIAO Q Y, ZHANG Y R, et al. Design of doped double-core photonic crystal fiber sound pressure sensor with high sensitivity[J]. Laser Technology, 2020, 44(5): 605-610 (in Chin-ese).
[32] YANG H R, HUANG W L, JIANG Sh X, et al. Temperature independent polarization-maintaining photonic crystal fiber with regular pentagon air hole distribution[J]. Optik, 2019, 185: 390-396. doi: 10.1016/j.ijleo.2019.03.120
[33] WANG L L, ZHAO X H, XIAO H, et al. Research on temperature compensation algorithm of fiber optic current sensor[J]. Electro-Optic Technology Application, 2019, 34(1): 25-30 (in Chinese).
[34] TEMKINA V, MEDVEDEV A, MAYZEL A, et al. Compensation of fiber quarter-wave plate temperature deviation in fiber optic current sensor [J/OL]. (2019-10-17) [2021-05-19]. https://ieee-xplore.ieee.org/docu-ment/8906876.
[35] XU Z, XU Q, CHEN X, et al. A linear optical current transducer based on crystal wedge imaging detection[J]. IEEE Sensors Journal, 2017, 17(23): 7894-7900. doi: 10.1109/JSEN.2017.2759813
[36] ZHANG H. High temperature and vibration robustness all-fiber cu-rrent sensor with a fiber-loop architecture and reflection scheme[J]. IEEE Photonics Journal, 2017, 9(3): 1-8.
[37] ZHANG H, JIANG J, ZHANG Y, et al. A loop all-fiber current sensor based on single-polarization single-mode couplers[J]. Sensors, 2017, 17(11): 2674. doi: 10.3390/s17112674
[38] TAO Y M, DU J B, MA L, et al. High sensitivity fiber optic current sensor based on recirculating loop[J]. Optical Communication Technology, 2016, 40(9): 30-32 (in Chinese).
[39] BOHNERT K, FRANK A, YANG L, et al. Polarimetric fiber-optic current sensor with integrated-optic polarization splitter[J]. Journal of Lightwave Technology, 2019, 37(14): 3672-3678. doi: 10.1109/JLT.2019.2919387
[40] BOHNERT K, HSU C P, YANG L, et al. Fiber-optic current sensor tolerant to imperfections of polarization-maintaining fiber connectors[J]. Journal of Lightwave Technology, 2018, 36(11): 2161-2165. doi: 10.1109/JLT.2018.2803807
[41] SIMA W X, WANG Y, YANG M, et al. A fiber-optic current sensor coupled with a Faraday rotator[J]. Proceedings of the CSEE, 2020, 40(8): 2670-2680(in Chinese).