[1] SODA H, IGA K I, KITAHARA C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 1979, 18(12): 2329-2330. doi: 10.1143/JJAP.18.2329
[2] IGA K. Forty years of vertical-cavity surface-emitting laser: Invention and innovation[J]. Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01. doi: 10.7567/JJAP.57.08PA01
[3] KASUKAWA A, TAKAKI K, IMAI S, et al. Enabling VCSEL technology for "Green" optical interconnect in HPC and data centers[C]//IEEE Photonic Society 24th Annual Meeting. New York, USA: IEEE Press, 2011: 393-394.
[4] WANG C C, LI Ch, DAI J J, et al. Thermal analysis of VCSEL arrays based on first principle theory and finite element method[J]. Optical and Quantum Electronics, 2019, 51: 196. doi: 10.1007/s11082-019-1909-6
[5] HONG K B, HUANG W T, CHUNG H Ch, et al. High-speed and high-power 940 nm flip-chip VCSEL array for LiDAR application[J]. Crystals, 2021, 11(10): 1237. doi: 10.3390/cryst11101237
[6] CHENG Ch S, SHEN Ch Ch, KAO H Y, et al. 850/940 nm VCSEL for optical communication and 3D sensing[J]. Opto-Electronic Advances, 2018, 1(3): 180005.
[7] 徐一帆, 施阳杰, 邵景珍, 等. 大功率半导体激光器的高精度脉冲电源设计[J]. 激光技术, 2023, 47(1): 108-114. doi: 10.7510/jgjs.issn.1001-3806.2023.01.017XU Y F, SHI Y J, SHAO J Zh, et al. Design of high-precision pulse power supply for high-power semiconductor laser[J]. Laser Technology, 2023, 47(1): 108-114(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2023.01.017
[8] 胡烜瑜, 郑皞翾, 郑毅, 等. 基于合束的500 W蓝光半导体激光模块化研究[J]. 激光技术, 2024, 48(4): 470-476. doi: 10.7510/jgjs.issn.1001-3806.2024.04.003HU X Y, ZHENG H X, ZHENG Y, et al. Research on modularization of 500 W bule semiconductor laser based on beam combination[J]. Laser Technology, 2024, 48(4): 470-476(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2024.04.003
[9] TIBALDI A, BERTAZZI F, GOANO M, et al. VENUS: A vertical-cavity surface-emitting laser electro-opto-thermal numerical simulator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1500212.
[10] GREENBERG K, SUMMERS J, FARZANEH M, et al. Spatially-resolved thermal coupling in VCSEL arrays using thermoreflectance microscopy[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. San Jose, UAS: Optica Publishing Group, 2008: 1-2.
[11] WIPIEJEWSKI T, YOUNG D B, THIBEAULT B J, et al. Thermal crosstalk in 4×4 vertical-cavity surface-emitting laser arrays[J]. IEEE Photonics Technology Letters, 1996, 8(8): 980-982. doi: 10.1109/68.508710
[12] GREENBERG K, SUMMERS J, HUDGINGS J. Thermal coupling in vertical-cavity surface-emitting laser arrays[J]. IEEE Photonics Technology Letters, 2010, 22(9): 655-657. doi: 10.1109/LPT.2010.2043728
[13] PAN G Zh, XUN M, ZHAO Zh Zh, et al. High slope efficiency bipolar cascade 905 nm vertical cavity surface emitting laser[J]. IEEE Electron Device Letters, 2021, 42(9): 1342-1345. doi: 10.1109/LED.2021.3098899
[14] JIN D Y, ZHOU Y X, GUAN B L, et al. Thermally induced current bifurcation and drastically collapse of output optical power in VCSEL arrays[J]. IEEE Transactions on Electron Devices, 2023, 70(12): 6415-6420. doi: 10.1109/TED.2023.3326117
[15] JIN D Y, YANG Sh M, ZHANG F, et al. Thermal design of VCSEL arrays for optical output power improvement[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3761-3767. doi: 10.1109/TED.2022.3177164
[16] BAVEJA P, KOGEL B, WESTBERGH P, et al. Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling[J]. Optics Express, 2011, 19(16): 15490-15505. doi: 10.1364/OE.19.015490
[17] COLDREN L, CORZINE S, MASHANOVITCH M. Diode lasers and photonic integrated circuits[M]. New York, USA: John Wiley & Sons Press, 2012: 60-64.
[18] SIMONM S. Semiconductor devices: Physics and technology[M]. 3rd ed. New York, USA: John Wiley & Sons Press, 2008: 82-120.
[19] BOER K W. The physics of solar cells[J]. Journal of Applied Physics, 1979, 50(8): 5356-5370. doi: 10.1063/1.326636
[20] WILMSEN C, TEMKIN H, COLDREN L. Vertical-cavity surface-emitting lasers: Design, fabrication, characterization, and applications[M]. Cambridge, UK: Cambridge University Press, 2001: 55-60.
[21] MENA P V, MORIKUNI J J, KANG S M, et al. A simple rate-equation-based thermal VCSEL model[J]. IEEE Journal of Lightwave Technology, 1999, 17(5): 865-872. doi: 10.1109/50.762905
[22] MENA P V, MORIKUNI J J, KANG S M, et al. A comprehensive circuit-level model of vertical-cavity surface-emitting lasers[J]. Journal of Lightwave Technology, 1999, 17(12): 2612-2632. doi: 10.1109/50.809684
[23] SOOUDI E, AHMADI V, SOROOSH M. A versatile HSPICE electro-opto-thermal circuit model for vertical-cavity surface-emitting lasers[C]//2006 IEEE International Conference on Semiconductor Electronics. New York, USA: IEEE Press, 2006: 866-870.
[24] ENTEZAM S, ZARIFKAR A, SHEIKHI M H. Thermal equivalent circuit model for coupled-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 2015, 51(4): 2400108.
[25] DESGREYS P, KARRAY M, CHARLOT J, et al. Opto-electro-thermal model of a VCSEL array using VHDL-AMS[C]//Proceedings of the 2002 IEEE International Workshop on Behavioral Modeling and Simulation. New York, USA: IEEE Press, 2002: 123-126.
[26] CHANG Q, SHI X Zh, WANG G F, et al. A new circuit-level thermal model of vertical-cavity surface-emitting lasers[C]//2009 Second International Conference on Intelligent Computation Technology and Automation. New York, USA: IEEE Press, 2009: 937-940.
[27] NAKWASKI W, OSINSKI M. Thermal properties of etched-well surface-emitting semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1991, 27(6): 1391-1401. doi: 10.1109/3.89956
[28] NAKWASI W, OSINSKI M. On the thermal resistance of vertical-cavity surface emitting lasers[J]. Optical and Quantum Electronics, 1997, 29(9): 883-892. doi: 10.1023/A:1018525616214
[29] MIEYEVILLE F, JACQUEMOD G, GAFFIOT F, et al. A behavioural opto-electro-thermal VCSEL model for simulation of optical links[J]. Sensors and Actuators, 2001, A88(3): 209-219.
[30] BAVEJA P P, KOGEL B, WESTBERGH P, et al. Impact of device parameters on thermal performance of high-speed oxide-confined 850 nm VCSELs[J]. IEEE Journal of Quantum Electronics, 2012, 48(1): 17-26. doi: 10.1109/JQE.2011.2176554
[31] OSINSKI M, NAKWASKI W. Thermal analysis of closely-packed two-dimensional etched-well surface-emitting laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 681-696. doi: 10.1109/2944.401258
[32] BOIKO D L, GUERRERO G, KAPON E. Thermoelectrical model for vertical cavity surface emitting lasers and arrays[J]. Journal of Applied Physics, 2006, 100(10): 103102. doi: 10.1063/1.2386941
[33] CHOI J H, WANG L, BI H, et al. Effects of thermal-via structures on thin-film VCSELs for fully embedded board-level optical interconnection system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 1060-1065. doi: 10.1109/JSTQE.2006.881903
[34] LEE H K, SONG Y M, LEE Y T, et al. Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation[J]. Solid-State Electronics, 2009, 53(10): 1086-1091. doi: 10.1016/j.sse.2009.06.005
[35] JEONG H J, CHOQUETTE K. Thermal modeling of transferred VCSELs[C]//2013 IEEE Photonics Conference. New York, USA: IEEE Press, 2013: 248-249.
[36] UEMURA T, NAGASHIMA K, NISHIMURA N, et al. Thermal design of 28 Gb/s×24-channel CDR-integrated VCSEL-based transceiver module[C]//2016 IEEE CPMT Symposium Japan. New York, USA: IEEE Press, 2016: 79-82.
[37] FORMAN C, LEE S, YOUNG E, et al. Continuous-wave operation of m-plane GaN-based vertical-cavity surface-emitting lasers with a tunnel junction intracavity contact[J]. Applied Physics Letters, 2018, 112(11): 111106. doi: 10.1063/1.5007746
[38] ZHANG J W, NING Y Q, ZHANG X, et al. Improved performances of 850 nm vertical cavity surface emitting lasers utilizing the self-planar mesa structure[J]. Optics & Laser Technology, 2014, 56(5): 343-347.
[39] MEI Y, WENG G E, ZHANG B P, et al. Quantum dot vertical-cavity surface-emitting lasers covering the green gap[J]. Light: Science & Applications, 2017, 6(1): e16199.
[40] FANG T X, CUI B F, HAO Sh, et al. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers[J]. Journal of Semiconductors, 2018, 39(2): 024001. doi: 10.1088/1674-4926/39/2/024001
[41] WANG J H, SAVIDIS L, FRIEDMAN E. Thermal analysis of oxide-confined VCSEL arrays[J]. Microelectronics Journal, 2011, 42(5): 820-825. doi: 10.1016/j.mejo.2010.11.005
[42] XUN M, XU Ch, XIE Y Y, et al. Modal properties of 2-D implant-defined coherently coupled vertical-cavity surface-emitting laser array[J]. IEEE Journal of Quantum Electronics, 2015, 51(1): 2600106.
[43] XUN M, PAN G Zh, ZHAO Zh Zh, et al. Analysis of thermal properties of 940 nm vertical cavity surface emitting laser arrays[J]. IEEE Transactions on Electron Devices, 2020, 68(1): 158-163.
[44] 史晶晶, 秦莉, 宁永强, 等. 850 nm垂直腔面发射激光器列阵[J]. 光学精密工程, 2012, 20(1): 17-23.SHI J J, QIN L, NING Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Optics and Precision Engineering, 2012, 20(1): 17-23 (in Chinese).
[45] LI W, QI Y X, LIU S P, MA X Y. High power density and temperature stable vertical-cavity surface-emitting laser with a ring close packing structure[J]. Optics and Laser Technology, 2020, 132(3): 106510.
[46] HAGHIGHI N, MOSER P, ZORN M, et al. 19-element 2D top-emitting VCSEL arrays[J]. Journal of Lightwave Technology, 2021, 39(1): 186-192. doi: 10.1109/JLT.2020.3023709
[47] HEUSER T, PFLUGER M, FISCHER I, et al. Developing a photonic hardware platform for brain-inspired computing based on 5×5 VCSEL arrays[J]. Journal of Physics: Photonics, 2020, 2(4): 044002. doi: 10.1088/2515-7647/aba671
[48] CHOQUETTE K D, SCHNEIDER R P, LEAR K L, et al. Low threshold voltage vertical-cavity lasers fabricated by selective oxidation[J]. Electronics Letters, 1994, 30(24): 2043-2044. doi: 10.1049/el:19941421
[49] ANGELOS C, HINCKLEY S, MICHALZIK R, et al. Simulation of current spreading in bottom-emitting vertical cavity surface emitting lasers for high-power operation[J]. Proceedings of the SPIE, 2004, 5277: 261-272. doi: 10.1117/12.522899
[50] 佟存柱, 韩勤, 彭红玲, 等. 氧化限制型垂直腔面发射激光器串联电阻分析[J]. 半导体学报, 2005, 15(7): 1459-1463.TONG C Zh, HAN Q, PENG H L, et al. Annlysis of series sesistance of sxide-aperture confined vertical-cavity surface-emitting laser[J]. Chinese Journal of Semiconductors, 2005, 15(7): 1459-1463(in Chinese).
[51] XU D W, YOON S F, TONG C Z, et al. Influence of oxide aperture on the properties of 1.3 μm InAs-GaAs quantum-dot VCSELs[C]//2008 IEEE Photonics Global@Singapore. New York, USA: IEEE Press, 2008: 1-3.
[52] 刘迪, 宁永强, 秦莉, 等. 氧化孔径对高功率垂直腔面发射激光器温升的影响[J]. 中国激光, 2012, 39(5): 0502005.LIU D, NING Y Q, QIN L, et al. Effect of oxide aperture on temperature rise in high power vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2012, 39(5): 0502005(in Chinese).
[53] PENG Ch Y, TSAO K, CHENG H T, et al. Investigation of the current influence on near-field and far-field beam patterns for an oxide-confined vertical-cavity surface-emitting laser[J]. Optics Express, 2020, 28(21): 30748-30759. doi: 10.1364/OE.397878
[54] LIAO W Y, LI J, LI Ch Ch, et al. Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure[J]. Chinese Physics, 2020, B29(2): 024201.
[55] BRAVE A, HEGBLOM E. Variable emission area design for a vertical-cavity surface-emitting laser array: US11482839B2[P]. 2022-12-25.
[56] CZYSZANOWSKI T, SARZALA R, DEMS M, et al. Spatial-mode discrimination in guided and antiguided arrays of long-wavelength VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(5): 1702010.
[57] ZHONG Ch Y, ZHANG X, LIU D, et al. Enhanced thermal stability of VCSEL array by thermoelectric analysis-based optimization of mesas distribution[J]. Chinese Physics, 2017, B26(6): 064204.
[58] ZHONG Ch Y, ZHANG X, HOFMANN W, et al. Low thermal crosstalk 808 nm VCSEL arrays with nonlinear mesa configuration[J]. IEEE Photonics Journal, 2018, 10(6): 1504608.
[59] LIU Y Y, HUANG Y W, ZHONG Ch Y, et al. VCSEL array thermal-distribution optimized by mesas rearrangement[J]. Optik, 2019, 186(6): 443-448.
[60] QI Y X, LI W, LIU S P, et al. Optimized arrangement of vertical cavity surface emitting laser arrays to improve thermal characteristics[J]. Journal of Applied Physics, 2019, 126(19): 191101.
[61] NING Y, JIE Y, YE T. Thermal chips layout method in MCM based on an improved particle swarm algorithm[C]//2019 Chinese Control and Decision Conference (CCDC). New York, USA: IEEE Press, 2019: 537-541.
[62] PU G Q, YI L L, ZHANG L, et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2019, 32(1): 7-10.